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This is a course given by Professor S.N. Alturi, UCI. Part of MSc. in Mechanical engineer-
ing.

1.1 Schedule

EngrMAE 207 COMPUTATIONAL MTHDS

Code Typ Sec Unt Inztructor Time Place Max Enr WL Req Nor Rztr Ead Web Status
16445 Lec A 3 ATLURLSN. MW 4:.00-5:50p C81259 20 2 22 11 0K OPEN

1.2 Text book

METHODS OF COMPUTER MODELING
[N ENGINEERING & THE SCEACES

VOLUME |
Satva N. Atluri

lhttp://www.techscience.com/books/mcmes voll.html]



http://www.techscience.com/books/mcmes_vol1.html
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1.3 Links

lhttp://care.eng.uci.edu/index.htm Professor Atluri CARE web site at UCIL.

lhttp://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-20Structural-
MechanicsFal12002/088DEC8D-4ACB-4E3E-9911-F3BB5EB6AF89/0/unit10.pdf|This
PDF file contains solution to TORSION problem in axial beam generating POISSON

PDE.

lhttp://opensees.berkeley.edu/|web site for OPENSEES FEM program.

lhttp://opensees.berkeley.edu/OpenSees/manuals/usermanual/index.htmljuser man-
ual for opensees from UC Berkeley web site.

lhttp://www.bem.uni-stuttgart.de/home.htmgood notes on BEM method.

lhttp://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/16-901Spring-2005/CourseHome/
[index.htm MIT open course for computational methods.

lhttp://ohio.ikp.liu.se/fe/appl.html|List of FEM books.

lhttp://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html|on-line course
material on FEM.

lhttp://www.ann. jussieu.fr/free.htm links to free numerical software.



http://care.eng.uci.edu/index.htm
http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-20Structural-MechanicsFall2002/088DEC8D-4ACB-4E3E-9911-F3BB5EB6AF89/0/unit10.pdf
http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-20Structural-MechanicsFall2002/088DEC8D-4ACB-4E3E-9911-F3BB5EB6AF89/0/unit10.pdf
http://opensees.berkeley.edu/
http://opensees.berkeley.edu/OpenSees/manuals/usermanual/index.html
http://www.bem.uni-stuttgart.de/home.htm
http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/16-901Spring-2005/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/16-901Spring-2005/CourseHome/index.htm
http://ohio.ikp.liu.se/fe/appl.html
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/Home.html
http://www.ann.jussieu.fr/free.htm
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1.4 Other support material

Few pages scanned from book on FEM about pressure smoothing. Book is The FEM by
Thomas Hughes.

226 Mixed and Penalty Methods ~ Chap. 4 Sec.44  Penalty Formulation
227
Some Historical Remarks on Mixed and Reduced discontinuous-pressure, mixed-method finit ibi ;
and Selective Integrati ﬂsumzl:d pressure equations. By the eq o ele:lizts exhlblt_a ??k.deﬁ:tl: :fs};l:;)t:e
expected with the pressure field of the penall i 3 i <
Mixed finite element formulations were first di d by Fraeijs de Veubeke [42] and typically manifest themselves as pmssfm (:sycgll:ici:;z: f;ﬁ:‘:},‘::;:lg"ﬁ P’“’b{:dmes
! i , if four-n

Herrmann [43]. Herrmann developed a reduced form of Reissner’s variational prin-
ciple particularly suited to problems of incompressible and nearly incompressible
elasticity and, based upon this principle, established the first effective finite elements
for such cases. This is the formulation given in Sec. 4.3. Prior to this development
many displacement models were applied to these problems, and poor behavior was
typically observed. The reasons for this were not understood at the time. Certain
elements derived from Herrmann’s formulation also failed. Hughes and Allik [39]
traced this failure to a correspondence between mixed and displacement models,
contained within Fraeijs de Veubeke's limitation principle [42].

The first example of a uniform reduced integration element was apparently the
plate-shell element presented by Zienkiewicz et al. [44]. This element, among others,
is discussed in Chapter 5. The same concept was employed in other areas by
Zienkiewicz and colleagues. In particular, Naylor [45] and Zienkiewicz and Godbole
[46] advocated the use of the eight-node dipity element in probl involving
incompressibility. The procedure, however, was viewed by many as more a “trick”
than a method and some bad experiences were subsequently noted for the serendipity
element.

The concept of selective integration was first employed by Doherty et al. [47]
to obtain improved bending behavior in simple four-node elasticity elements. One-
point Gauss quadrature was used on the shear-strain term, and 2 X 2 Gauss quadrature

velocity field remains good.
Fortunately, smoothing procedures of a least s,
» 8 uares 5
b(.b; necessary filtering as a byproduct. A cc I . stu:;IypZtL sf“]:;cemLto_ perf(;::n
n performed ny Lce et al. [52]. The methods we prefer for consmnt-jress -
elements (53], which involve slight modificati of sch in [52). are
described next. o .

Let the discontinuous pressure field be written as

[ & o ]
PP=3 ¢p (4.4.25)

e=1

where pe is the element mean i
- pressure and ¢° is the eth element “‘characteristic

ik = J 1 ifx € 0
ve(x) { o L E (4.4.26)
. The smoothed pressure is written

was used to integrate the remaining terms. Although improved behavior was noted in ”

some configurations, lack of invariance opened the approach to criticism. P= Zw NyPa (4.4.27)
Studies performed by Fried [38], Nagtegaal et al. [40], and Argyris et al. !48] The standard least L ]

provided fresh insights into why the displacement approach failed in constrained squares procedure gives rise to the following matrix problem:”

problems. Malkus [49, 50] proved the equivalence of a class of mixed models with Y5 =p g

reduced selective integration single-field elements in linear elasticity theory. The where (4.4.28)

equivalence results of Malkus and Hughes [36] elevated the reduced and selective !

integration approaches from the realm of tricks to a legitimate methodology. Consid- L Y = Y]

erable research on the behavior of mixed and reduced and selective integration ele- (4.4.29)

ments has taken place in recent years. A summary of more recent developments is P = {ps} (4.4.30)

contained in the following sections. and

4.4.1 Pressure Smoothing P=1{r} (4.4.31)

"The least squares procedure defines 5 by minimizing

J’ (P - phrda
a

With respect (o the Pa’s. The resulting equations emanate from

The pressure field in the reduced and selective integration penalty function formulation
is to be viewed as discontinuous from element to element. In fact, all displacemem
derivatives for C° isoparametric elements are, in general, discontinuous across ele-
ment boundaries. Thus, for plotting purposes, it is desirable to employ a smoothing
procedure, which redefines the field under consideration in terms of the displacement
shape functions Nj.

With specific reference to the pressure, there is at least one other reason for
employing a smoothing procedure. It was mentioned carlier that, in certain situationss

3
A C
-’FAL(P Pan=o0

fora=1,2,... 0,
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228
. f Y and P j produce a zero diagonal entry in ¥. In this case we employ a “row-sum” diagonal-
e on the values 1, 2, . . . M. 'l_'he construction o is groc : . |
:‘;;;1:1!::5': ;h‘; ﬁil element-by-clement fashion, viz.* ization technique in which
net o ! ¥o =84 | NidQ (no sum on a) (4.4.39)
= s p=A (p) (4.4.32 .
r=A Aw ) i .
s above integration, which also suffices for the second of (4.4.34), may be per-
g d by either one-point or 2 X 2 Gauss-Legendre integration—the latter scheme
ye =[5 pE= TN 1<a b=n, (4.4.33) Fetact
The procedures just described render the formation, storage, and solution of the
ye = | NeNgdQ,  pi=pe J N dQ (4.4.34) matrix equation (4.4.28) very efficient. The results produced tend to be very good at
F P [ interior nodes but leave something to be desired at boundary nodes. To improve upon

e results, a “correction” at each boundary node is performed. The procedure used

i itive-definite and possesses a
o o for four-node elements may be described with the aid of an example.

iti implificati be engendered by replacing ¥ by

d-profile structure. Additional simplification may be enger .

::nassl::cimed diagonal matrix.’ This is done by approximating the first of (4.4.34);
effective procedures are summarized as follows:

As it stands, the matrix ¥ is sy

Consider the mesh illustrated in Fig. 4.4.5(a). The nodes are segregated into four
. groups. The boundary node corrections are carried out in the following steps in order:
n = 2: rectilinearcase. The2 X 2 product, trapezoidal integration rule may

be used to diagonalize y°, i.e.,
Vi = 8j(€w M) (o sumon a) (4.4.35)

where

o e ) ‘

e Lnip Bl A (Jacobian determinant) (4.4.36)

: e D (c) Typical external
(a) Mesh corner node

Nen
(4.437)
 didions 2 Nixg Internal node
a=1
External corner node
Internal corner node

[ ]
@  Noncorner boundary node
(]
°

i i “natural” coordinate system.
d &, and 7, are the coordinates of node a in the element “nal ¢
gus o ion scheme to the second of (4.4.34) yields

Applying the same integrat
ps = pJ&s ma)

Further simplification may be achieved by appmximatling j(&, Ma) in (4.4.315)5 :ﬂﬂ

(4.4.38) by j(0, 0). (When {)* is a parallelogram, j© is constant and no 1o

accuracy is incurred by this procedure.) y o
Tl);e three-dimensional case is the straigntforward generalization of the

we omit the details.

above, 80

(b} Typical noncorner (d) Typical internal
boundary node carner node

in.
1 = 2; axisymmetric case. If we attempt to apply the above pmce)d‘il;ﬁm
the axisymmetric case, we encounter a difficulty due to the factor x, (;eﬁn: Wi
is, ;= 0; idal i C
integrands. Along the x,-axis, x, = 0; hence the trapezoidal integration # 20 Step 1: Noncorner, Boundary Nodes

A typical case of a noncorner, boundary node is depicted in Fig. 4.4.5(b). It may be
observed that the unaltered value of ', is actually a higher-order approximation to the

Figure4.4.5 Example mesh for fc de element, p

32) are not the same as those used previously. Here,
there is only one degree of freedom per node.
tained when Y is diagonal!

" The “assembly operators” in (4.4.
boundary conditions are taken account of and h
31 ec et al. [52] have also found that higher accuracy is at
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pressure at the midpoint of the line joining nodes A and B; see Barlow [54]. Thus we

redefine the 7. by way of linear extrapolation, i.e.,

Pa = 24~ Ps (4.4.40)

Step 2: External Corner Nodes
A typical situation is depicted in Fig. 4.4.5(c). The unaltered value of p is precisely
the constant pressure p°, because the above procedures reduce to “do-nothing” calcy-
lations at external corners. (If checkerboarding was occuring in the p“'s, the value of 7,
would be grossly in error.) In this case linear extrapolation is employed through nodes
B,C,and D, i.c.,

o Enﬁ’s"‘ Zc‘ﬁc"" ZD?D (4.4.41)
where

L= Lo + (ac = xa0)xa + (x1p = xichras (4.4.42)
Le=Le + (= Xan)xa + (i = Xip)xaa (4.4.43)
Lo =Lp+ (xs — xac)xia + (x1c — X18)x2a (4.4.44)
L = XicXap — XipXac (4.4.45)
Le = xipXp — XipXap (4.4.406)
Lp = xipXac — Xickas (4.4.47)

Lol +Lbe+ [n (4.4.48)

Step 3: Internal Corner Nodes

A typical configuration is shown in Fig. 4.4.5(d). In this case the unaltered F, is
essentially a weighted average of the p®’s associated with the three elements which have

node A in common. As in Step 2, if checkerboarding has d, the 1 Pa
would be significantly in error. Again linear extrapolation is used; namely
(4.4.41)-(4.4.48).

Generalizations of the above procedure may be used for smoothing pressures in
some higher-order elements.

Example (Driven Cavity Flow)

A problem description is shown in Fig. 4.4.6. This problem is a much studied example
of Stokes flow. Note that the boundary conditions are discontinuous at the upper corer.
In the example problem the corner node velocity is set as illustrated in Fig. 4.4.7. For
further discussion of the significance of the manner in which the corner discontinuity i$
modeled, see [53]. The calculation was performed in double precision (64 bits/
floating-point word). The penalty parameter was defined by A/ = 107. A 10 x 10
mesh of bilinear elements was employed with the S1 integration scheme. The un-
smoothed pressures exhibit significant oscillations, which are removed by the method
described above; see Fig. 4.4.8.

"
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=0 v, =0
| w=0 u,=0

uy=1,u,=0

Detail of boundary condition
at corner element
uy=1
uy=0

Figure 4.4.7

vy =uy=0

Xy

1

4.4.6 Driven cavity flow: problem description.

08

O Element centers
= Smoothed o

(o]

Figure 4.4.8 Pressure results for the cavity flow.
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2.1.1 Review of FEM solution for the torsion problem of a rectangular
cross section

Review of FEM solution for the torsion problem of a
rectangular cross section

Nasser M. Abbasi

Nov 27,2006 Compiled on September 4, 2021 at 3:48pm
Contents
1 Introduction 1
2 The problem 2
3 The big picture 4
4 Mathematical derivation 7
4.1 Derivation of the symmetric weak form of the 2D Poisson equation . . . . ... .. 7
4.2  Converting the symmetric weak form equation from the global Cartesian coordi-
nates system to natural coordinates system . . . . ... ... ... .. L. 9
43 Noteontheshapefunctions . . . . ... ... ... ... ... ... ... .... 22
5 Assembly of the global stiffness matrix 22
6 Assembly of the global load vector 24
7 Modification of the final global stiffness matrix and load vectors and final solution 24
8 Conclusion 27
9 References 28

1 Introduction

This is a review of the FEM solution to the torsion problem of a rectangular cross section beam. First
a description of the problem is given, then a description of the FEM method is shown, followed
by a simple numerical worked example.
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2 The problem

The problem is to solve the Poisson 2D problem for rectangular cross section. This equation is the
mathematical model for a beam under torsion as described in the following diagram.

10
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Tactual

Torsion of
Rectangular cr:
section problel

G VA
Material shear Discretize the cross
modulus (N/ section for FEM
m”2)

Requirement: Solve for shear
stresses developed in the «
cross section due to torsion

’ Physical model ‘ ¢=00onT

| T ——

Prandtl stress

St. Venant model

function model Given for the matrial. Example,
@ for steel use G=80*10"9 N/m~2
52¢ 52¢ o Twist angle per unit length (radians/meter).
—_— —_— = —2Ga Assume a value. After calculation of PrandIt
ox2 6y2 function is completed, we will scale
Use FEM to everything again using the actual Torque to
the Calculated torque ratio. Use 1 degree
solve for ¢i "
per meter or 0.01745 radians per meter

Use the Prandtl function to find calculated torque

elements elements

i . Where for a . s ; ; ;
T = D0 Tear = D5 2[ ¢/0A triangle [ gida= 2374} = 2(g)+ ¢} +4h)
= i= ! lement J 3 4 8
it i € i1

Find the scaling ratio to use for scaling all other calculated
values (including stresses and assumed twist angle)

T
r = T actual .
calculated 3 _» ]
s
Actual twist angle = r * assumed twist angle J ¢j
»
Actual shear stress = r * calculated sheer stress s
) i Wi 2
The calculated sheer stress is found from 7zy = ——~ T = o
The calculated sheer stresses are found for each element. For linear interpolation i
function, and triangular element, they are constant over the element 1 L(;Sl

Since we are using a triangle elements for the FEM mesh, the cross section mesh is the preferred
mesh to use as shown in this diagram.

11
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Alternative mesh type for the rectangular section using triangle elements

Y %—J
Do not use this mesh. Numerical result for

quadrature does not behave as well as cross di
mesh

Cross diagonal mesh. Yield

y Y
results for quadrature as n

*reference: “The Finite Element Method” by Hughes. Pages 356-358 changes.

3 The big picture

Before going into the details of the FEM solution it might be useful to look at the big picture.

12
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The big
picture

Physical problem ;\_\5 KT K .

=

A physical model, but idealized to make-it'easier to derive
lldealized physical model ‘ the mathematical model. Example mass/spring/damper
model

) (M@} + [KI{u} = {F}

Obtain the Mathematical model. Typically an ODE/PDE, system of equation
coupled, non-coupled, linear or nonlinear, time variant/non-time variant,
deterministic / stochastic, etc... With many other variations

I Called the
strong
V2§ = -2Ga = f form
Dirichilet B.C. Solve peo formulatio
(essential conditions) n of the
is zero for our problem- _ _ _ _ _ | N $=0onl differential
] eq. -
(WRM)
Analytical solution Finite difference methods (FDM)‘ fc"lT"e"‘ the strorg form to a weak form as
follows __ TN
l ’/lfnﬁn/o;vns "N~ "Shape or trial \
typically used for Mathematical S pehich wis_‘"_vf‘/ ~functions s
For simpl dels and models based on Eulerian formulation. | As$U™® s°~|u"°"
or s:mp ¢ mot els a(r; Solution obtained is valid at the grid ¢~ ¢ =QNL+UN +- + ANy
;lmp g geomedry an points. FDM are based on tayler series Substitute this assumed solution into
oundary conditions. . . . . i i
ry . approximation. The algorithms are the strong form, we obtain a Residual
Separation of variables, simpler than the weak form based (error due to approximation) J
Il::::iform methods, Green methods but does not handle V2 -t =Roy)-f
nAE00A/2008) complicated geometry as well. :\PPIY WRM by selecting a test
l unction
. I . Euler, FTCS, Downwind, Upwind, [(vzga —f)v(xy)dA=0
Analysis of solution. LAX, LAX-Wendroff, Leap Frog, a
Wendrof, Crank, Niclson, Runga- v

Kutta, Etc... J‘(Vzg) _f ) v (xy)dA =0

We require this Weak Form @

to be valid for all

possible test of the oV eQ
functions ifferential
differentia 4= 0ol
eq.
v =0onl’

The following diagram shows more description of the methods.

13
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V\b!ght ed Residual Met hod St eps These are the trial function basis (also

called shape functions, or interpolation

1 Given strong form V2u —f = 0 functions)
2. Select atest functionV = p1Vy + PaVz + -+ + PNVN

3. Find a the combination of coefficients ; for the trial function & = q1U1 + QaU2 + --- + gnUN Which will make

j(vza—f)v dA =0
| o

j(vZ&-f)v(x,y)dA:o. pVeQ =00l v =0l

Q

Choice of Global vs. Local trial and test functions

|

~ . . . 1 local funct ion: defined over an element wit hin t he discretized domain Q
U global function: defined over all of t he domain Q

Using global trial function can be By discretization using simple
done for 1-D problems, but for elements such as triangles, we are
higher dimension, Finding simpl able to come up with simple
polynomials for basis functions polynomials for the basis

over an arbitrary boundaries is functions and cover the whole
hard. domain at the same time

- ) ) s i j i
U,V global functions: t he basis local trial function for element | is W= qlNl + quz + Q3N3

) |
are global over all of t he domain Q Choice of test (weight) function v

Choice of test (weight) function v I % ]
| Vis selected from the basis functions Vis constant over
~ Other variations of test
| l used to define the trial function i each element

function in conjunction
Diracdelta Heaviside Weighte | of using non-symmetric

function step function  d integral N FVM weak form lead to
e pranet S uareg Galerkin method field/boundary integral
_L LL d See Prof. Atluri, equations and field/

error boundary element
method Assuming we choose Vol 1 book, page? method. See text book,
I i =qiNy + Ny + -+ + quNy 277-280 for details ¢\ pierx
Collocation| Subdomain Then
method method I(v2¢ ~f)N; dA=0 i=12M
o
overlapping Non- |
overlapping

I(V%—f) Ny dA=0
Q
: Assuming we select M basis
2% functions to approximate u
_[(V ¢t ) Ny dA =0 with over each element, then
Ql we will obtain M equations
per element as follows

To reduce the continuity requirement
on u within the element, we convert the
unsymmetrical weak form above to a
symmetric weak from. See next page

14
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4 Mathematical derivation

4.1 Derivation of the symmetric weak form of the 2D Poisson equation

The following diagram shows the steps to obtain the symmetric weak for of the 2D Poisson PDE

15
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Process to Convert weak form to symmetric weak form using integration by parts and divergence theorem

J(“’v)nx + (ﬂv)ny dr; -

A
[(va-f)vda =0 <«
Ill \\\
AN - X
iV e Q; R ¢ \
Vv =0onT K—ju‘”'
® [ 2ra .
D | e 2 (@) = 2y,
[Zhvda+ [ZLvdA-[fv dA | =0 mesmmere S50 o
ox? ox? «— Integration
Q %, i(_l )_ o by parts
J/@ Then 5 V= > o x ox
Similarly, Ly = £ (C—LV) - EN
P o 2 oy \ oy oy oy
(8- 220
X \ ox X
Q
+IL(ﬂ )—ﬂﬂdA @ Bm.[ &(va)dA (a(v)nxdlj
A‘y By Ey Plugin here Qj rj Divergence
Q 7 theorem
_J'fv dA =0 andj”( )dAz (3y )nydl"J
Q T
l A
ai o v J - X
I( v)nxdl‘ J. X ox BN ﬁ(x,y)
- @,V =0onT
N v(X,y)
+j( )nydl" jﬂidA .
AN K ]
rj ; AN 3
. 2
~[tvda o
Q A Global
| Evaluate this for | coordinates
\L each element. 1 [E

Il
o

i ov o ov
fﬁmx w\/+fvdA

a,v are C°continuous € Qjand atT;

See Textbook page
282 for more

" =~ atthe inter — element boundaries details

16
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4.2 Converting the symmetric weak form equation from the global Cartesian
coordinates system to natural coordinates system

Converting the integral equations from the global Cartesian coordinates system to what is called
the natural coordinates system (the local coordinates system) is a standard step used in FEM.

”A local coordinates system that relies on the element geometry for its definition and whose
coordinates range between zero and unity within the element is known a natural coordinates
system. Such system have the property that one particular coordinate has unit value at one node
of the element and zero value at the other nodes: its variation between nodes is linear”!

Integration of shape functions when they are written in the natural coordinates are simplified
since the origin is now located on the element. These are the main reasons for changing from
global coordinates to the natural coordinates. For simple geometries, one can avoid having to do
this coordinates transformation, but in general and in practice it is the standard procedure to do.

I found that most of the technical and mathematical difficulties involved are in this step. So more
details will be spend on this.

The global coordinates of the element is shown in this diagram

<

X3 Y3

’(xz,h

X1’Y1

> X
Showing the global
coordinates of nodes
for element )

Given an equation or expression where the independent variables in the equation are x,y (the
global Cartesian coordinates system) and we wish to express this same equation using the inde-
pendent variables C, 17, then we perform coordinates transformations.

Given that x = x (C, r]) andy =y (C, r]) , we first find the differentials of the old coordinates system
(i-e. dx,dy) in terms of the differentials of the new coordinates system (dC,dn)

The matrix that represents this mapping between the differentials in the old coordinates system
and the new coordinates system us called the Jacobian (some books call the determinant of this
matrix as the Jacobian). It is important to note that this mapping is between the differentials of the
independent variables in the two coordinates system, and not between the variables themselves.

1The FEM for engineers. Kenneth Huebner. 1975
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Hence we write
—_—~
dx ac  dn
dy W %y
ac  dn

] is also written as
;_2ky)
2(¢n)

The main use for the Jacobian is in change of variables from one coordinates system to another,

and also in performing area and volume integrals.

10

dC

The covariant
base vectors
w~

Curvillinear
coordinates system

This is the coordinates
system that we currently
have the equations

written with reference to the old coordinates

Note: a general curvilinear coordinates system
has a covariant base vectors (these are tangents
to the coordinates lines) and it also has a
contravariant base vectors (these are orthogonal)

This is the coordinates
system that we would like
to express the equations
in reference to

y
u(x,y)—»u(g“,r;) J = M
o¢.m)
€y
ey X We want to rewrite our

equation so that the
independent variables are
the new coordinates and not

in the new coordinates system

The Jacobian J maps differentials in the
global coordinates system to differentials

Hence, converting an integral from the global coordinates to the natural coordinates can be done

as follows

J sepasay= [ 11 I tg(C,n) | dcen

When the natural coordinates are area coordinates (which is the case here), we should modify

the above to become

18
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1 pl-Ly
f f(x,y) dxdy = f f g (L1, Ly) ]I dLpdLy
A 0o Yo
The area coordinates (L, Ly, L3) are illustrated in this diagram

L1+L2+L3=1

y Ay

A bi="%
_ M

Ly = &

_ A

Ly = =

\/

Area coordinates (L1,L2,L3)

It is important to realize that the shape functions Ny, N,, N3 used will be the same as the area
coordinates.

Let us now start from the symmetric weak form equation, with the goal to convert it to the natural
coordinates (see previous diagram for the derivation of this equation)

du du dv Qu&v
f (gv)n,c ( ) dr - faxax ddy+fovdxdy:O (1)

Cexternal boundary i

Since the first integral above is carried along the boundaries of the whole domain itself (not along
the boundaries of the individual elements themselves) and since we set the value of the test
function v to be zero at the boundaries of the domain, the first part of the above integral is zero.
Hence the above integral become

Ju dv 8uo"v
dx Ix 8&

Q

2% gy + f Fodxdy = 0 (1)

In the following derivations, everything is done on an element j, hence all the u,v, and element
nodes coordinates x;, 1, etc.. should have a superscript j on, as in #/, v/ etc... To make things easier
to read, I will not put the superscript j but will add it back at the end.
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Consider first the second integral from (1) Which can be rewritten as
Jdu
d J dx
h=if(§ 5) ” dmw+1}mmy )
Q 9y Q
Consider the first integral from above
@
dv  Jv dax
1:](5 &—y) o Ldxdy (2A)
Q E

j Iy

The above is written with reference to the global coordinates system. However, We want our trial
and test functions to be defined in the natural coordinates system (where things are simpler). So
we need a way to transform the above integral (2A) to the natural coordinates system.

Assume we have the mapping x = x (C, r]) andy =y (C, r]) (we will see how to obtain this mapping
below). This mapping tells us how the global coordinates themselves change as a function of
the natural coordinates. Now we can use differentiation chain rule to see how the trial and test
functions themselves change relative the global coordinates.

Ju Judx Judy
9C " gxal " ayac
du _Judx Judy
a1~ axan " dyan

Similarly for the test function

P _doix oy
dC dxdC dydC
Jv _Jdvdx Jdvdy
a1~ axan " dyon

To make things more clear, we rewrite the above using matrix notation. For the trial function

B I TR N

aC | 9C a¢ dx

du T ox dy Q

an an  dn dy
Jdu
dx

SN 3)

%y

20
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and similarly for the test function
w) [ a]f
aC _ aC  JdC dx
w (T wl|] e
an an  dn Ay
@
dax
=1 p (4)
9y
From (3) and (4), we see the following inverse transformations
ou o
Jx 1 aC
w (=U (5)
Iy an
and
7 7
dx 1] a¢C
SRR (6)
Iy an

Now transpose the column vector in (6) to be a row vector because that is how it is laid out in the
integral (2A), ( and remember to change the order when transposing a product)

Jdv  Jdv Jdv  Jdv _
(5 5)-(% &)

Now we are ready to convert the integral I, in eq (2A) to the natural coordinates system (these
are area coordinates, notice the integral limits and the order of integration)

du
BZ} 317 a
L= f( = ) 3 dxdy
11-C Ju
= @ @ -T -1 aC
- f f ( % o )[]] 1y o, pdet[ldndc 7
00 -

In

21
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Where we used the standard relationship that
dxdy = det [J]dndC

Remember to put d first before dC since the inner limit is on C.

Now that we have everything in the natural area coordinates system, we can do the integration.
One small point left, which is to determine the differentials involved in (7).

For this we now need to decide on the actual form of the trial and test functions and on the

mapping between the global and the natural coordinates system. The following e;(plgin(s} th{i}s part,
v v u u
nd

we will come back to the above integral once we have obtained the differentials T T a

determined the Jacobian.

The following diagram shows the linear transformation we will use. This is a standard transfor-
mation where the natural coordinates are called the area coordinates described more below.

Coordinates
transformation

We see from the above diagram that

x= s+ (1) o (=) (8)
y=vh+(vh-vh) o (h-vi)n

From the above we obtain the following differentials

aC (22 = x1)
J
ﬁ (xx3 = x1)
J
56 =(-w)
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Now, we consider the trial and test functions. based on the above transformation shown in eq (8),
We see that the linear trial and test functions can also be written in similar transformation

uf=u€+(ué—u§)C+(ué—u§)n

R R R ¢ ®

Again, immediately, we obtain the following differentials from the above expressions

? = (uz —uy)
3—;{ = (u3 —uy)
? = (v - v1)
j—:; = (v3 - 1)

Hence the Jacobian can now be evaluated (see eq(3) for reference)

[ ox
L a
Ul= x ay
| Idn In

- (g = x1) (yz - y1)
» (23 = x1) (y3 - y1)

And its inverse is

I = (y3 _yl) (yl —yz) 1
(vp-x3) (xp—x;) | detl]

And

(ys - yl) (v1 —x3) 1
(y1 - yz) (xa —x1) det[J]

U’ =

Now that we have all the differentials needed, we can now go back to the integral in eq (7) and
compute it:

23
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Ju

11-C du
2= ff( j_zc) % )U]T o ji det [J]dndC

00 9_17

11-C

= [[[@-o @-o ]m‘Tm‘l{ e ) }detmdndc
0 0

(u3 —u7)
-1 -1 [}
“Tem-1] =1 ,
[or 2w ]d 1 0 01" [_1 } Uy ¢ det[J]dndC
us
This is the local stiffness matrix for element j

1i-¢f -1 -1 11 0 i
“[aea]|f[f{1 o U]‘T[n‘l[_1 - }detmdnda ty (1)
00 0

C

1-C
0

|

1 Uz

Now we can evaluate K/.

11-¢ -1 -1
K=[f { 0 }[I]’T[]]‘l[ by Jaemane
00

1T o En) cams | 1 [ aen) (a-w) 1_[ 110 ]det[]]
0 1 (y1-y2) C(o-x) |detUl] (xy-x3) (rp—xp) |detUIL -1 0 1
1 b% + C% b2b1 + CoCq b3b1 + C3C1

= m b2b1 + CoCq b% + C% b3b2 + C3Cp

2 2
b3b1 + C3C1 b3b2 + C3Cp b3 +C3

Where

by=yo—y3, ba=y3—y1, b3 =Yy1 - Yo, C1 =X3—Xp, C = X1 — X3, C3 =X — X1

24
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Hence

1 b% + C% bzbl + CrCq b3b1 + C3C1

wzjf

_(;1
J det[]]

bel + CrC1 b% + C% b3b2 + C3Cp dndc

b3b1 + C3C1 b3b2 + C30p bg + C%

But the integrand is a constant, hence we take it out of the integral

2 2
bl + (o] bel + CrC1 b3b1 + C3Cq 1-C

1
. 1
K = w b2b1 + CrCq b% + C% b3b2 + C3Cp ffdﬂdc
b3b1 + C3Cq b3b2 + C3Cp b% + C% 0

11-C
Now we evaluate f f dndcC
00

Hence

b% + C% b2b1 + CrC1 b3b1 + C3Cq

K = m byby + cocq bs+c5 Dby +cs0
bgbl + C301 bgbz + C30p b% + C%

But from (10) we see that

det [J] = x3 (1 — v2) +x1 (v2 —v3) + %2 (v3 — 1)

and the area of a triangle with corners at (xl, yl) , (xz, yz) , (x3, y3) is given by

25
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1 X1 ]/1 1
A= E det X2 Yo 1 |=
x3 Y3 1

(x1 (1/2 - ys) + X (ys - 3/1) + X3 (}/1 - yz))

N =

Hence we get '
det ([JY) = 24/

Therefore we can replace det ([]]j ) by 2A/ everywhere. Rewrite the local stiffness matrix in terms
of the local element area:

b% + C% bel + CoCq b3b1 + C3C1

K] = M bel + CoCq b% + C% b3b2 + C3Cp
b3b1 + C3C1 b3b2 + C3Cp b% + Cg

Now that we have K/ we plug it back into eq (11)

1 b% + C% bel + CoCq b3b1 + C3C1 uy
= [ ”(]]1 27]2 2713 :Im b2b1 + CoCq b% + C% b3b2 + C3Cp M]Z
b3b1 + C3C1 b3b2 + C3Cp b% + C% Mé
And now that we completed this integral we go back to eq (2) :

This is the integral we just completed above

@
Jdv  Jdv dx
I =- f(aa—y) o tdA +ffvdA

We need to work on the second integral above f fvdA and transform it to the natural coordinates.

26
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- f Fivldxdy

Q

19

=(vg o z,é)fffdxdy

(4 o o)

Where

1 1-C . X
QFLLwaWWC

o
Q,
ol

1 p1-C . .
=ff f’ll—C—r])detU]]dr]dC

= fi ety [ f (1-c- ndn)dc
0

= fl det U]f

0

= f} det [}

= f} det [}

]det[]]

o

]det[]]f

_ jdetmf(
- A%

And

h

[

1-C-C+2-

h

o

[-22 +=

1-9-ca-9- 45 ]dc

cz 2¢)
e,

2 4C+20%-1- c2+2c) dc

1-20+ %) dC
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And

Hence

20

. 1 1-C . .
%=LL FiN, det [} dndC
. . 1 1-C
= det[J] £ dnd
MMfgﬁﬁ Cdndc
X 1 1-C
=det[]} £, ( d)d
et[J] fzfo fo Cdn) dc
_ (e
= det[J} f} fo (;n)o dc
X . 1
=det[lf f; [ @a-0)dc
0
X . 1
=det¥ £} [ (c-c)ac
L. CZ CS 1
_ J 1= _ =
-ge (5 -5)
=daUFﬁ(5—ﬂ

(1
=MWﬂ@

. 1 1-C . .
Q= fo fo FiN, det [} dnd
X . 1 1-C
=det[J} f dnd
emmﬁﬁnw

a2\ 1C
= detly £} f (%) ac
0

o pl ()2
= det[J} fo a ZC) d

(-2
_ ]
= detiff f} [ e
Cdet) (. 222 &
=2 M“T*QO

_ det[J} fé(1—1+l)

2 3

i1
=MWﬂ@

28
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o
h=(d % %)) d
o

det 1Y £ 1)

=(v§ .l Ug) detU]ff£<§)

detlly 74 (2)
- fi
e . . . .
e A L]
f5

But det[]] = 24/ Hence the above becomes

P £
b=3(d 4 4)) 5
f5

Now we have the integral in eq (2) completed. We now have our local equations completed. Here
it is. We next need to assemble them.

This is the above integral we just completed

K]i,l K]i,z K]i,3 u]i ‘ f]i
ol | K K K [{ e S(d g ) A =0
Ké,l Ké,z Ké,3 ”é fé
Ki K]i/z Kis || ) A
_ﬁ Ky Kby Ky |3 1) +§ =0
K]31 Ké,z K]é3 Mle, ]3
K]i,l Kji,z K]1‘,3 u/1 ]1
ﬁ Ké,l K]ﬁ,z K£,3 ué = %A/ 12
Ké,l Ké,z Ké,s ”é é

29
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Where
K]Ll K]1,2 K]l,?) b% + C% bel + CrC1 bgbl + C3C1
Ké,l Ké,z K]é,3 = bel + CrC1 b% + C% b3b2 + C3Cp
i i - 2, 2
Ké 1 K{’),Z Ké,?) b3b1 + C301 b3b2 + C30p b3 +C3
4.3 Note on the shape functions
Looking at the trial function in eq (9), repeated here
ul =1t +(uj —ujl)C+(ué—uQ)r]
Hence we see that
W= uj1 + uéC - ujlé + uj317 - u]in
N; Ny N
N -
=u(1-C-n)+u, C +uzm (2)

And since we are looking for a trial function to be of the form u; (Basis;) + u;, (Basis,) + uz (Basisz)
we see from the above that the 3 shape or basis functions are the following

N1=1—C—r]
NZZC
N3 =1

And since we are using the Galerkin method, where the test function uses the same basis functions
as the trial function, we can write the test function as

'Uj = 7)]1N1 + 'UlzNz + Z7]3N3

5 Assembly of the global stiffness matrix

The global stiffness matrix K is always square and symmetric and positive definite. (At least for
structural analysis). Recall a positive definite matrix K is one such that for any nonzero vector x
we always have x*Ax > 0 where x" is the conjugate of x. Properties of positive definite matrix is
that all its eigenvalues are positive, and it has positive determinant, and hence a positive definite
matrix is always invertible.

In addition, the global stiffness matrix is banded. This means that all non-zero elements are found
along bands close to the main diagonal of the matrix. Within the band itself, some values can be
Zero.

The width of the band is a function of the numbering of the nodes used. Different node numbering
can result in smaller band width. We want to have as small a band width as possible to take
advantage of some numerical methods that can utilize banded matrices.
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Band width can be reduced if we keep the node numbering in each element as close as possible

to each others.

Now that we have found the local stiffness matrix K/ for element j we can assemble the global
stiffness matrix as shown in this diagram. The direct stiffness construction method is used. This

is explained in the following diagram

Local node
1 2 3 -~ number for 8
the element 1 32 1 2
10123 @
2(2]al3 @
3/1]3]s e 434 1
4|46 |3 3 3 2
5(5(3 (8 @ @
6 (9|7 |3 1 @ . 1
7|8(3]|7 1 2
Elemsnt 1 Assume we have t%e above mesh. 9 4
number nodes and 7 elements. Black node
numbers are the global node numbers.
This table shows for each The red node numbers are the local
element where its local node node numbers
number is located in the global
node numbering system
2 3 4 6 3
1] k11 | k12 | k13 4] ki1 | k12 | k13
- - '
An example Local -7 7 7
stiffness matrix for 21 k21 | k22 | k23 6 | k21/| k22 /i<23
element 4 o / [ ]
’ / ¢ 1
3] k31 | k32 k33 3| k81 | k32| K33
// ' // 1
// (/I /// /
- ~ o0 < /o ~ o o/ // !
/ / 1
/ // ,/ /l
/ /
/ / /
// /// //
2 S
// . 7’ . //
K / 7 - / For each local K for each
a 4 ’ ’ i ) element, do the following:
’ P £ 1. Look up the local node
5 ;’ /,// S mapping to the global node
| e s numbering.
N 7 2. re-label the local K
6 LT e numbering according to this
* L pping.
. T 3. Copy the local K elements
7 B to the global K matrix and
Add it to whatever element
8 allready exist in that entry in
the global K matrix.
9
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6 Assembly of the global load vector

This follows in similar fashion as above. The 3 elements Load vector { f ] for element j is added to
the entries of the global load vector {F} using the node numbering mapping.

7 Modification of the final global stiffness matrix and load vectors
and final solution

Now we have the following equation

Where K is the assembled global stiffness matrix and {F} is the assembled global load vector. Before
we solve for {u}, which is the stress function at all the nodes, we must modify K and F to take
care of the given boundary conditions. I attach below 2 pages from a book which gives a good
explanation and small example on this point.

Now that we have the modified K* and F* you can solve for {u} using your favorite linear equations
solver.
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Appendix 3
MODIFYING THE SYSTEM
OF EQUATIONS

The system of equations
[K]{o}={F)
or
(KU} ={F}+{P}

obtained by using the direct stiffness procedure must be modified whenever some
of the values in {®} or {U} are known. All field problems except some problems
involving convection heat transfer must have some of the boundary values specified
and all solid mechanics problems must have displacements specified to eliminate
rigid body motion. Therefore, the modification of the system of equations to
incorporate known nodal conditions is more the rule than the exception.

Our objective here is 1o discuss and then illustrate a systematic procedure for
modifying [K | and {F} such that we satisly two criteria. First, we must obtain
the correct answers for all values in (@} or {U}. Second, we do not want to change
the size of [K ], {F}, and {P} because this leads to programming difficulties. We
shall consider the steady-state situation first and then discuss the modification of
cquations associated with time-dependent field problems.

II.1 STEADY-STATE EQUATIONS

The modification of the system of equations [K|{®} ={F) isa two-step procedure
once the subscript of the known nodal parameter is available. For example,
suppose that @5 has a known value. The modification proceeds as follows,

1. All of the coefficients in row five are set equal to zero except the diagonal
term, which is left unaltered. In equation form, K5;=0, j=1,..., 17 and JiES.
The associated term in the column vector {F}, Fs, is replaced by the product
Kss®s.

2. All of the remaining equations are modified by subtracting the product
Kjs®s from F; and then setting Kjs =0, j=1,...,n, j45.

25
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418 LINEAR AND QUADRATIC ELEMENTS
ILLUSTRATIVE EXAMPLE

Modify the following system of equations when @, =150 and ®5=40.
55 —46 0 0 07 (D, 500
—46 140 —46 0 0f|®,; 2000
4 —46 110 —46 4 |45 =41 1000
0 0 —46 142 —46 || 4 2000
0 0 4 —46 654 < 900

To implement step one, we set all of the coefficients in rows one and five to zero
except the diagonal terms, which are left unaltered. The corresponding terms in
{F}, F, and Fs, are then replaced by F; =K, ;®, and Fs=K;s®s, respectively.
This step yields '

55 0 0 0 07| @, 8250
—46 140 —46 0 01|, 2000
4 -46 110 —46 4 |45 =1 1000

0 0 —46 142 —46 | | Dy 2000

0 0 0 0 654 | @5 2600

The second step involves the elimination of the columns of coefficients that
multiply @, and @s. This is accomplished by transferring the coefficients involving
@, and @; to the right-hand side. For example, F, becomes 2000 +46®, or 8900.
Completion of this step gives

55 0 0 0 07|, 8250
0 140 —46 0 0f|®, 8900
0 —46 110 —46 04@y ;=4 240
0 0 —46 142 0Py 3840
0 0 0 0 651 (D5 2600

111.2 TIME-DEPENDENT EQUATIONS

The incorporation of specified nodal values in time-dependent problems is more
complicated because the solution procedure involves combinations of [C] and
[K]. namely [A4] and [P]. We shall place the same requirement on the time-
dependent solution that was placed on the steady-state solution. We want to keep
the dimensions of [C] and [ K | and thus [4 ] and [ P] the same after modification
as they were before modification.

The algorithm for modifying [C] and [K] is more easily understood once we
have looked at a specific problem. Let us reconsider the problem in Section 14.5
without the heat source at node one. Instead we assume that ®, =40°C for all time
values. The vector of initial conditions {®}, becomes {®}7=[40 0 0]
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8 Conclusion

The following are the main steps in solving the torsion problem described in this report.

Physical problem

Generate the Mathematical model
Strong form (ODE/PDE)
Convert to Unsymmetrical Weak form. WRM

Convert to symmetric Weak form
Determine the element type to use

Determine trial and test functions, determine the shape functions
Convert integrals to natural coordinates

Compute the local stiffness and load vectors
Assemble global and load matrices

Adjust final matrices for given boundary conditions
Solve the final system. Find the stress function

Use the stress function to determine the calculated applied torque

Determine the scaling ratio by comparing the calculated torque to the actual torque

Solve for the sheer stresses, apply the scaling ratio

27
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2.1.2 Report on Weighted Residual methods and FEM

Examples solving an ODE using finite elements method.
Mathematica and Matlab implementation and animation

Nasser M. Abbasi

Sept 28,2006 Compiled on September 4, 2021 at 9:03pm
Contents
1 Introduction 1
2 Weighted Residual method. Global trial functions. 4
2.1 Firstexample. Firstorder ODE . . . ... ........ ... ... ......... 4
2.2 Second example. 4thorderODE . . . . . . ... ... .. ... ... . ........ 9
3 Finite element method 12
3.1 Example one. First order ODE, linear interpolation . . . . ... .. .......... 12
3.2 Example Two. 2nd order ODE, Boundary value problem. Linear interpolation. Sym-
metricweak form. . . . . . ... 23
4 References 31

This report is a basic review of weighted residual methods and FEM. Some basic differential equa-
tions are used to illustrate the method. Mathematica and Matlab code written to solve numerically
a first and second order ODE using FEM.

1 Introduction

This is a basic review of Finite Elements Methods from Mathematical point of view with examples
of how it can be used to numerically solve first and second order ODE’s. Currently I show how
to use FEM to solve first and second order ODE. I am also working on a detailed derivation and
implementation using FEM to solve the 2D Poisson’s equation but this work is not yet completed.

FEM is a numerical method for solving differential equations (ordinary or partial). It can also be
used to solve non-linear differential equations but I have not yet studied how this is done. FEM
is a more versatile numerical method than the finite difference methods for solving differential
equations as it supports more easily different types of geometry and boundary conditions, in
addition the solution of the differential equation found using FEM can be used at any point in the
domain and not just on the grid points as the case is with finite difference methods. On the other
hand FEM is more mathematically complex method, and its implementation is not as straight
forward as with finite difference methods.
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Considering only ordinary differential equations with constant coefficients over the x domain
(real line).

d

aZl +by() = )
d
aﬁ +by®) - f(x) =0

defined over 0 < x <1 with the boundary condition y(0) = y,. In the above, only when y(x) is the
exact solution, call it y,(x), do we have the above identity to be true.

In other words, only when y = y, we can write that a% + b y.(x) = f(x) = 0. Such a differential
equations can be represented as an operator L

d
L:=(y,x) - u% + by(x) - f(x) 1)

If we know the exact solution, call it y,(x) then we write

L (ye x) = a% + by, (x) - f(%)

-0

FEM is based on the weighted residual methods (WRM) where we assume that the solution of
an differential equation is the sum of weighted basis functions represented by the symbol ¢; in
here. This is in essence is similar to Fourier series, where we represent a function as a weighted
sums of series made up of the basis functions which happened to be in that case the sin and cosine
functions.

So the first step in solving the differential equation is to assume that the solution, called 7(x), can
be written as

N
7(x) = 239 ¢;(x)
j=1

Where g; are unknown coefficients (the weights) to be determined. Hence the main computational
part of FEM will be focused on determining these coefficients.

When we substitute this assumed solution in the original ODE such as shown in the above example,
equation (1) now becomes

- ay

L(y,x) = aﬁ + b (x) — f(x)
= R(x)

Where R(x) is called the differential equation residual, which is a function over x and in general

will not be zero due to the approximate nature of our assumed solution. Our goal is to to determine
the coefficients g; which will make R(x) the minimum over the domain of the solution.

The optimal case is for R(x) to be zero over the domain. One method to be able to achieve this is
by forcing R(x) to meet the following requirement

f R(x) v:(x) dx = 0
Q
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for all possible sets of function v;(x) which are also defined over the same domain. The functions
v;(x) are linearly independent from each others. If we can make R(x) satisfy the above for each
one of these functions, then this implies that R(x) is zero. And the solution #(x) will be as close as
possible to the exact solution. We will find out in FEM that the more elements we use, the closer
to the exact solution we get. This property of convergence when it comes to FEM is important, but
not analyzed here.

Each one of these functions v;(x) is called a test function (or a weight function), hence the name
of this method.

In the galerkin method of FEM, the test functions are chosen from the same class of functions as
the trial functions as will be illustrated below.

By making R(x) satisfy the above integral equation (called the weak form of the original differential
equation) for N number of test functions, where N is the number of the unknown coefficients g;,
then we obtain a set of N algebraic equations, which we can solve for g;.

The above is the basic outline of all methods based on the weighted residual methods. The choice of
the trial basis functions, and the choice of the test functions, determine the method used. Different
numerical schemes use different types of trial and test functions.

In the above, the assumed solution 7(x) is made up of a series of trial functions (the basis). This
solution is assumed to be valid over the whole domain. This is called a global trial function. In
methods such as Finite Elements and Finite volume, the domain itself is descritized, and the
assumed solution is made up of a series of solutions, each of which is defined over each element
resulting from the discretization process.

In addition, in FEM, the unknown coefficients, called g; above, have a physical meaning, they are
taken as the solution values at each node. The trial functions themselves are generated by using
polynomial interpolation between the nodal values. The polynomial can be linear, quadratic or
cubic polynomial or higher order.

Lagrangian interpolation method is normally used for this step. The order of the polynomial is
determined by the number of unknowns at the nodes. For example, if our goal is to determine the
axial displacement at each node, then we have 2 unknowns, one at each end of the element. Hence
a linear interpolation will be sufficient in this case, since a linear polynomial a4y + a;x contain 2
unknowns, the 4; and 4. If in addition to the axial displacement, we wish to also solve for the
rotation at each end of the element, hence we have a total of 4 unknowns, 2 at each end of the
element, which are the displacement and the rotation.

Hence in this case the minimum interpolating polynomial needed will be a cubic polynomial ay +
a1x +a,x% +azx>. In the examples below, we assume that we are only solving for axial displacement,
hence a linear polynomial will be sufficient.

At first, we will work with global trial functions to illustrate how to use weighted residual method.
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2 Weighted Residual method. Global trial functions.

The best way to learn how to use WRM is by working over and programming some examples.

We analyze the solution in terms of errors and the effect of changing N on the result.

2.1 First example. First order ODE
Given the following ODE

dy

2y Y =0

defined over 0 < x <1 with the boundary condition y(0) = 1, we wish to solve this numerically
using the WRM. This ODE has an exact solution of y = e*.

The solution using WRM will always follow these steps.
STEP 1

Assume a solution that is valid over the domain 0 < x < 1 to be a series solution of trial (basis)
functions. We start by selecting a trial functions. The assumed solution takes the form of

N
7(x) = 7o + Y,q; ¢;(x)
j=1

Where ¢;(x) is the trial function which we have to choose, and g; are the N unknown coefficients
to be determined subject to a condition which will be shown below. 7, is the assumed solution
which needs to be valid only at the boundary conditions. Hence in this example, since we are given
that the solution must be 1 at the initial condition x = 0, then 7, = 1 will satisfy this boundary
condition. Hence our trial solution is

N
g=1+ Y9 ¢;()
j=1

STEP 2

Now we decide on what trial function ¢(x) to use. For this example, we can select the trial functions
to be polynomials in x or trigonometric functions. Let us choose a polynomial ¢;(x) = /, hence
our assumed solution becomes

]7:1+quxj (1)

Now we need to determine the coefficients qj, and then our solution will be complete. This is done
in the following step.

STEP 3

Substituting the above assumed solution back into the original ODE, we obtain the residual R(x)

dy
o F(x) = R(x)

R(x) is the ODE residual. This is the error which will result when the assumed solution is used in
place of the exact solution.
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5
Hence from (1), we find the residual to be
d N N
R(x) = m [l + gqj xf] - [1 + gqj x]]
= =
= D0 - (1 + 22 x]]
j=1 j=1
N . .
= -1+ )4 (jxf‘1 - xf) (2)

j=1

Our goal now is to reduce this residual to minimum. The way we achieve this is by requiring that
the residual satisfies the following integral equation

1
f v(ORWAx =0  i=1--N 3)
0

The above is a set of N equations. The integration is carried over the whole domain, and v;(x) is a
weight (test) function, which we have to also select. Depending on the numerical scheme used,
the test function will assume different forms.

For the Galerkin method, we select the test function to be from the same family of functions as
the trial (basis) functions. Hence in this example, let us select the test function to the following
polynomial

v;(x) = x'1 (4)
STEP 4

We now choose a value for N and solve the set of equations generated from (3). Let us pick N = 3,
hence R(x) becomes

3
R(x) = -1+ qu (jxf‘1 - xf)
i=1

=-1+q, (1 - xl) +q; (2x - xz) +q3 (3x2 - x3)
Substituting the above in (3) gives

x=1
fxf-lR(x)dx —0 i=1--N
x=0

—

X (‘1‘”7 (1‘x1)+q2 (2x—x2)+q3 (3x2—x3))dx=0 i=1.--3
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The above generates N = 3 equations to solve. They are

x=1

f(—1+q1 (1—x1)+q2 (2x—x2)+q3 (3x2—x3))dx=0 i=1
x=0
x=1

x(—1+q1 (1—x1)+q2 (2x—x2)+q3 (3x2—x3))dx:O i=2

Be—

x=1

xz(—1+q1 (1—x1)+q2 (2x—x2)+q3 (sz—xs))dx:O i=3

—

x=0

Perfoming the integration above, gives the following 3 equations
1 1 B _2 B _3 -0
71 3 q2 3 g3 i
1 1 5 | 1) 0
> 1 6 92 12 qs3 0]~

1 1 3 18,
T3 M\ T12) "2 T10) "B\ T30) T

Which can be written in matrix form as

1 2 3
2 3 1|[g] |}
1 5 11 1
i 12 = Q2] =12
1 3 13|43 1
2 10 30 8

The solution is
72 30 20

M= ﬁ,fh = ﬁ,% =7
Hence our assumed series solution is now complete, using the above coefficients, and from equa-
tion (1) we write

N .
=1+ qu X
j=1

T=1+q x+qox% + q3x°

Hence
30 , 20,
+ X"+ —x
7177 71
Let use compare the above solution to the exact solution y = e* by comparing the values of the

solution over a number of points. This is done using the following small Mathematica code
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In[77:= Remove["Global "]
exact[x_] := Exp[x]

error[x ] := Abs[exact[x] - approx[x]]
s = Table[{x, exact[x], approx[x], error[x]}, {x, 0, 1, .1}];

TableForm[s, TableHeadings -» {None, {"x", "exact", "approx", "error"}}]

Out[82]//TableForm=

X exact approx error

0 1 1 0

0.1 1.10517 1.10592 0.000744575
0.2 1.2214 1.22197 0.000569073
0.3 1.34986 1.34986 3.47354 x10-7
0.4 1.49182 1.49127 0.000557092
0.5 1.64872 1.64789 0.000833947
0.6 1.82212 1.82141 0.00071035
0.7 2.01375 2.01352 0.000231581
0.8 2.22554 2.22592 0.000374564
0.9 2.4596 2.46028 0.000678579
1. 2.71828 2.71831 0.0000280307

Figure 1: Using N = 3

To make this more useful, we can examine how the error changes as N changes. The following
Mathematica code determines the solution and calculates the same table as above for N =1:--5

In[615]:=
Remove["Global “x"]
ode[y_, x ] :=D[y[x], x] -y[x]/;
sol = Flatten[DSolve[{ode[y, x] == 0, y[0] == 1}, y'[x], x]];
exactSolution[x_ ] = y[x] /. sol;

trialFunction[x , j_] := xI ;

weight[x_, j_] :=x¥1;
to
eq[i_, residue ] := j weight[x, i] residuedx =0;
from
solution[maxN_, from_, to_] := Module[{coeff, residue, j, a},

coeff = Array[a, maxN];

maxN

yapprox[x ] :=14+ Z coeff[j] trialFunction[x, j];
31

residue = ode[yapprox, Xx];

s = Table[eq[]j, residue], {j, 1, maxN}];

sol = Flatten[Solve[s, coeff]]

1

from =0;

to=1;
masty

approxSolution[x_, sol_] :=1+ Z sol[[j, 2] trialFunction[x, j];
51

error[x_, sol_] := Abs[exactSolution[x] - approxSolution[x, sol]];
Do[{sol = solution[maxN, from, to];
Print["N=", maxN, " Approx Solution is ", approxSolution[x, sol]];
s = Table[{x, exactSolution[x], approxSolution[x, sol], error[x, sol]},
{x, 0,1, .1}1;
Print[TableForm[s, TableHeadings -» {None, {"x", "exact", "approx", "error"}}]1;
}, {maxN, 1, 5}]/

Figure 2: Code used for N =5
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N-1 Approx Solution is 1+2x

x exact approx error

0 1 1 0

0.1 1.10517 1.2 0.0948291

0.2 1.2214 1.4 0.178597

0.3 1.34986 1.6 0.250141

0.4 1.49182 1.8 0.308175

0.5 1.64872 2. 0.351279

0.6 1.82212 2.2 0.377881

0.7 2.01375 2.4 0.386247

0.8 2.22554 2.6 0.374459

0.9 2.459 2.8 0.340397

1. 2.71828 3 0.281718

S 6x 6%

N-2 Approx Solution is 1+ =%+ =%

x exact approx error

0 1 1 0

0.1 1.10517 1.09429 0.0108852

0.2 1.2214 1.20571 0.0156885

0.3 1.34986 1.33429 0.0155731

0.4 1.49182 1.48 0.0118247

0.5 1.64872 1.64286 0.00586413

0.6 1.82212 1.82286 0.000738342

0.7 2.01375 2.02 0.00624729

0.8 2.22554 2.23429 0.00874479

0.9 2.459% 2.46571 0.00611117

1. 2.71828 2.71429 0.00399611

i 72x  30x 20

N-3 Approx Solution is 1+ + +
1T 7

x exact approx error

0 1 1 0

0.1 1.10517 1.10592 0.000744575

0.2 1.2214 1.22197 0.000569073

0.3 1.34986 1.34986 3.47354x 107

0.4 1.49182 1.49127 0.000557092

0.5 1.64872 1.64789 0.000833947

0.6 1.82212 1.82141 0.00071035

0.7 2.01375 2.01352 0.000231581

0.8 2.22554 2.22592 0.000374564

0.9 2.459% 2.46028 0.000678579

1. 2.71828 2.71831 0.0000280307

Ne4 Approx Solution is 1+ ~000% 510X 20x7 10
1001~ 1001 ~ 143 ~ 143

x exact approx error

0 1 1 0

0.1 1.10517 1.10514 0.0000290599

0.2 1.2214 1.22141 7.83125x10°°

0.3 1.34986 1.3499 0.0000382953

0.4 1.49182 1.49186 0.0000354422

0.5 1.64872 1.64873 5.00303x 107

0.6 1.82212 1.82209 0.0000288903

0.7 2.01375 2.01371 0.0000394208

0.8 2.22554 2.22553 0.000014455

0.9 2.459% 2.45963 0.0000242615

1. 2.71828 2.71828 1.10177x10°7

\o5 Approx Solution is 1. [6090X  9030x 3080 630 252x°
18089 ~ 18089 ~ 18089 = 18089 ~ 18089

x exact approx error

0 1 1

0.1 1.10517 1.10517 4.8554x10°7

0.2 1.2214 1.2214 1.42918x10°°

0.3 1.34986 1.34986 1.13938x 10

0.4 1.49182 1.49183 6.37093x10°

0.5 1.64872 1.64872 1.71012x10°F

0.6 1.82212 1.82212 9.14353x 107

0.7 2.01375 2.01375 8.89238x 107

0.8 2.22554 2.22554 1.46473x10°°

0.9 2.459% 2.4596 3.20763x 107

1. 2.71828 2.71828 2.76651x 10"

Figure 3: Result for N = 5

This code below plots the absolute error as N changes. Notice that the number of peaks in the
error plot is also N which is the polynomial order (the trial solution) used to approximate the

exact solution, which is to be expected.
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7= p={};
Do[{sol = solution[maxN, from, to] ;
p= Append[p, Plot[error[x, sol], {x, 0, 1}, PlotRange - All, AxesLabel » {"x", "error"}, PlotLabel - {"Error at N=",6 maxN},
DisplayFunction - Identity]];
}, (maxN, 1, 6}];
Show [GraphicsArray[ {p[[1]], P[[2]], P[[3]]1} 1]
Show [GraphicsArray[ {p[[4]], P[[5]1], P[[6]]}1]

error (Error at N=, 1) error (Error at N=, 2} error (Error at N=, 3}
0.015 0.0008
0.3 0.0125

0.01

0.0006

0.0075 0.0004

0.005
0.1 0.0002
0.0025

0.2 0.4 0.6 0.8 1 ) 0.2 0.4 0.6 0.8 1 ) 0.2 0.4 0.6 0.8 1

Ouf740}= - GraphicsArray -

- . , error (Errer at Ha, 6)
exror (Error at N=, 4) error (Brror at N=, 5) (Error at N=, 6

0.00004 1.75:20"° 6207
1.5:207° 5:207°
0.00003 1.2520°° -e
420
1.207¢ i
0.00002 7.551077 320
-7 2207°
0.00001 S0
2.5:10 1:207°

Figure 4: Error using N = 5

2.2 Second example. 4th order ODE

Now we will use a more complex example and repeat the above steps. We now want to numerically

solve the following
4

d

ﬁ +yx) =1

defined over 0 < x <1 with the boundary conditions y(0) = 0,y(1) = 0,’(0), ' (1) = 0. This prob-
lem is taken from Professor S.N.Atluri text book "Methods of computer modeling in engineering

and the sciences” Volume 1, page 47-50. Professor Atluri used a trigonometric functions for the
trial function

N
j= E%’ sin ((2i — 1) 7tx)
i=1
Which already satisfies the boundary conditions. For the test function, the same function as above
is used hence the test (weight) function is

vj(x) = sin ((2] - 1) nx)

The book above then reduces the residual equation to a symmetric form by doing integration by
parts before solving it for the coefficients. In here, we will use the unsymmetrical weak form and
compare the results with those shown in the above textbook. We now start again with the same
steps as we did in the above example.

step 1
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Selecting the trial solution.
N
) = To + Y34 ¢
j=1

Yo = 0 as this will satisfy the boundary conditions. Hence the trial solution is

N
7(x) = Xq,0,(x)
j=1

step 2

Selecting trial basis function ¢;(x). As mentioned above, we select ¢;(x) = sin ((2] - 1) nx) , hence

the trial solution is N
7= Eq]- sin ((2] - 1) nx)
=1
step 3

Substituting the above assumed solution into the original ODE, gives the differential equation
residual R(x)

iy
A +7(x) -1 =R(x)

d* (X N
A (Z%‘ ¢f<x)] * [E% qu(x)) ~1=R(x)
j=1 j=1

Notice the requirement above that the trial basis functions must be 4 times differentiable, which
is the case here. From above we obtain

R(x) = (g (1 +((2-1) n)4) gysin((2j-1) nx)] -1

Our goal now is to reduce this residual to minimum. The way we achieve this is by requiring that
the residual satisfies the following weak form integral equation

f v(OR@Ax =0  i=1--N 3)
Q

The above is a set of N equations. The integration is carried over the whole domain, and v;(x) is
a weight (test) function, which we have to also select. As mentioned above, in this problem we
select the test function to be

i(x) = sin ((2i — 1) 7x) (4)
step 4

Deciding on a value for N and solving the set of equations generated from (3). Let us pick N = 3,
hence R(x) becomes

3

> (1 +((2-1) n)4) (g;sin (2 -1) nx)] -1

=1

R(x) = (

= ((1 + n4) (fh sin nx) + (1 + (37‘()4) (qz sin (3nx)) + (1 + (5n)4) (q3 sin 57zx)) -1
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Hence (3) becomes

fv,-(x)R(x)dx:O i=1--1
Q
1
f(sin(zi—nnx)R(x)dx:o i=1-1
0

1
f(sin (2i —1) 7tx) [((1 + n4) (ql sin sz) + (1 + (371)4) (q2 sin3nx) + (1 + (57'()4) (q3 sin57'cx)) - 1]dx =0 i=1---1]
0

The above generates N equations to solve for the coefficients g;

1
f(sin TTX) {((1 + 7'(4) (‘h sin nx) + (1 + (3n)4) (qz sin 37zx) + (1 + (57'[)4) (q3 sin 57zx)) - 1}dx =0 i=1
0

1
f(sin 37x) {((1 + n4) (ql sin nx) + (1 + (37'[)4) (q2 sin (37zx)) + (1 + (571)4) (q3 sin 57zx)) - 1}dx =0 i=2
0

1
f(sin 57tx) [((1 + 714) (zh sin nx) + (1 + (37'()4) (qz sin 3nx) + (1 + (57'()4) (q3 sin 5nx)) - 1]dx =0 i=3
0

Carrying the integration above and simplifying and solving for g; gives the numerical solution.

This below is a Mathematica code which solves this problem for different N values, and compares
the error as N changes. The error shown is the percentage error in the solution (approximate
compared to exact) for up to N = 10. The result below agrees well with the result in Professor’s
Atluri textbook.
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error (Error at N=, 1} error (grror at N=, 2} error (Error at N=, 3}
0.4 0.04
0.
0.2 0.02
0
X
0.2 .4 0. 0.8 1
-0.2
-0.4
error (Error at N=, 4} error {Error at N=, 5}

. ooﬁgror (Exror at N=, 7} eIror (Error at N, 8) error(Error at N=, 9)
. 0.0001
0.0002 0,000075
00001 0.000025
* WoVe i*
0 4/ 8l |1 -0.000025
~0.0001 ~0.00005)
-0.0002 -0.000075
error {Error at N=, 10}
0.00006
0.00004

/\A\WM
R RRRRAETE

-0.00004

Figure 5: Error for different N using FEM for second order ODE

3 Finite element method

3.1 Example one. First order ODE, linear interpolation

Let us first summarize what we have done so far. Given a differential equation defined over
N

domain Q, we assume its solution to be of the form i(x) = Eq]- ¢j(x).
j=1

The function ¢;(x) is called the ™" basis function. q; ¢j(x) is called a trial function.

The function ¢;(x) is made up of functions called the shape functions N as they are normally
called in structural mechanics books.

g; are the unknown coefficients which are determined by solving N set of equations generated

by setting N integrals of the form f R(x) v;(x) dx to zero. Where R (x) is the differential equation

Q
residual. In all what follows N is the taken as the number of nodes.
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In FEM, we also carry the same basic process as was described above, the differences are the
following:

Now we divide the domain itself into a number of elements. Earlier we did not do this.

Next, the ¢;(x) function is found by assuming the solution to be an interpolation between the
nodes of the element. The solution values at the nodes are the g; and are of course unknown
except at the boundaries as given by the problem.

We start by deciding on what interpolation between the nodes to use. We will use polynomial

interpolation here. Then g;¢; (x) will become the interpolation function.

In addition, the coefficients g; represent the solution at the node j. These are the unknowns, which
we will solve for by solving the weak form integral equation as many times as there are unknowns
to solve for.

By solving for the nodal values, we can then use the interpolating function again to find the
solution at any point between the nodes.

This diagram illustrates the above, using the first example given above to solve a differential

du

equation —- — u(x) = 0 with the given boundary condition of #(0) = 1 and defined over 0 < x <1

This is the given These are the unknowns we are solving for.
solution value at /
the boundary

\ ) Js
* | -7 - ~ ‘
\] - S |
q 1 - - q _- - ~ - ' X
=~ 2
=~ g > ~N q4
~
element 1 element 2 element 3 l X=1
node 1 node 2 node 3 node 4
X1 X2 X3 X4

Here we assume linear interpolation between nodal
values of the solution

Figure 6: Finite elements with linear interpolation

Using linear interpolation, the solution #(x) when x is located inside first element, is found from

u(x) = g1 + slope (x — xg)

g2
Xo—.

But the slope of the linear interpolating line over the first element is

2R -
X2 =X

1
o’ hence the above becomes
1

u(x) =g, +

(%3 — x) (x = x1)
1(352 - xq) 2(962 -Xx7)
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The above is the linear interpolating polynomial. We could also have used the formula of La-
grangian interpolation to arrive at the same result.

The above is the approximate solution which is valid over the first element only. Using superscript
to indicate the element number, and assuming we have equal division between nodes of length
say 1 (i.e. element length is 1) then we write

(22 = x) (x—x1)

ul(x)zlh I +q I

Again, the above is valid for x; < x < x,. We now do the same for the second element

(x3—x) (x —x7)
Mz(x):qz 3]’1 +4q3 h 2
The above is valid for x, < x < x3. And finally for the 3rd element
(x4 —x) (x — x3)
3(x) =
W) =g — +da—

The above is valid for x, < x < x3. This is now illustrated in the following diagram

u 2
1 \
u u 3
y
\ q 2 X
| -
q 1 / : -7 > ~ )
=~ t _ -~ \4\
=~ \q/Z/ ~
~. Qs
element 1 element 2 element 3 L X=1
node 1 node 2 node 3 node 4
X1 X2 X3 X4
Here we assume linear interpolation between nodal
values of the solution

Figure 7: Finite elements with linear interpolation second diagram

Since our goal is to express the global approximate solution u (x) as a series sum of basis functions
each multiplied by g;, we now rewrite each of the i/ to allow this, as follows

Ni) N} (@)

( ) ( )
Xo — X X —X
ul(x) = =+ g

= 1N] (%) + 4o N3 (x)

50




2.1. Documents by Naseer M. Abbasi CHAPTER 2. SOME COLLECTED....

15

The above is valid for x; < x < x,. Notice the use of the following notation: Since each element will
have defined on it two shape functions, N1 (x) and N,(x), one per node, then we use a superscript
to indicate the element number. Hence for element 1, we will write its two shapes functions as
Ni (x) and N3 (x).
We now do the same for the second element

N2(x) N3(x)

(3-%) (x-x)
X3 —X X—=X
W

= 42N () + g3N3 ()

The above is valid for x, < x < x3. And finally for the 3rd element
Ni(x) N3 (x)

—_—— —_———
3 _ (x4—x)+ (x — x3)
q3 n 44 n

= g3N7 + q4N3

The above is valid for x, < x < x3. The global trial function is
u(x) = u' + u? + 1’
= (1N +g2N3) + (92N7 + 43N3) + (9:N3 + q4N3)
= 1N + g, (N3 + NZ) + g5 (N2 + N§) + g4 (N3)
The shape function for node 1 is

¢1 = Ni
Xy —X

h

And the shape function for node 2 is

¢» = Nj + N}
_ (x-x1)  (x3—-x)
TTh T

The shape function for node 3 is
¢3=N3 + N3

(x—x2)  (x4—x)
=4
h h
The shape function for the last node is
¢4 =N, S
_ X — X3
T ooh
We see that the shape function for any internal node is
_ .X—X]‘_l + x]‘+1 - X

Pi h h
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The approximate solution is therefore

16

Number Nodes

u(x) =

)

i=1

9i0;

This completes the first part, which was to express the global approximate solution as sum of
basis functions, each multiplied by an unknowns g coefficients.

The diagram below illustrates the above.

ut = giN1(x) + QoN3(X) |

u? = g2Ni(x) + gsN3(x)

ud = qsN3 + q4N3

[ y
{ gs

q1 A < x

£ q 2
Js
element 1 element 2 element 3 L X=1
node 1 node 2 node 3 node 4
X1 X2 X3 X4

Figure 8: Showing solutions at each element

The diagram below illustrates the numbering used.
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ut u? u N1
e i—1 u
ul ‘
Js ‘ an
qr | /|
Lo 02 2 . a; >
Qj-+* gn-1
X=0| elementl| element2 element j-Z,J element element N-1 =1
node 1 node 2 node 3 node -1  nodej node (N-1) node N
X1 X2 X3 Xj-1  Xj XN-1 XN

Numbering used for N number of nodes and N-1 number of elements

Figure 9: Numbering used for interpolation and elements

Next the residual R(x) is found by substituting the above global solution into the original differ-
ential equation as we did before.

Let The differential equation to solve be

du

adx

+bu(x) = f(x)

Defined over 0 < x <1 with the initial condition #(0) = u.

N is the number of nodes, therefore the residual is
d N N
R(x) = ﬂath‘?i +b Y qii — f(x)
i=1 i=1
N
R() = Y (a +bepi) = f(x)
i=1
The test functions are
U]' = CP] ] =1---N

The weak form of the differential equation is

f PMR@dx=0  j=1--N

X=Xx1
X=XN N
[ o (| Sntaor +b0) |- ro)ax =0 j=1-en
X=X1 i=1
N equations are obtained from the above, which are solved for the g;.

The derivatives of the shape functions are found first. Assuming in this example that the domain
is divided into 3 elements results in
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L9 i
(xp—x) -1
1 [ T
(x=x1) (x3-%) 1
2| {5 e 1)
(x—xp) 1
3 h [
In general, if there are N nodes, then for the first node
_ (2 — x)
o1 =2
, -1
(Pl - h
And for the last node
_(x—xna)
on =
, 1
qjN - h
And for any node in the middle
(x - xi-1)
¢i=
¥=;
forx; 1 <x <x;and
_ (i1 — %)
(Pl - h
, -1
(Pi - h
for x; < x < xj4q.
Looking back at the weak form integral above, it is evaluated as follows
X=XN N
K ([qu (agf + bqbf)] —f(x)) dx=0  j=1-N
xX=X1 =1
For the first node only, j = 1, the following results
X=XN N
[ or(|Zntoor+b0) |- r)ax =0
xX=x1 i=1
Since ¢ is not zero only over x; < x < x,, and given that ¢; = )%, ¢1 = _71, ¢y = (X_h—m due to the
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range of integration limits, and that ¢ = %, then the above can simplifies to

f P1 ([ql (aqb{ + b(j)l) + 4o (aq)’z + bqbz)] - f(x)) dx =
j —(xzh_ al ([ql (_7” + b—(xzh_ x)) + 0 (ah s hxl))] f(x)) dx=0

X=X1

The above simplifies further to

Ba+2b( - 1) (- 1)?)  (Ba+blg-x) (i -x)® [
- 7 -1 — - [ o=
X=X1
Ba+2b( —1) (- 1)?)  (Ba+bl -x) @ -x)? 1
! o2 — 2 a0z 7 f (xp—x) f(x) =
X=X1
Since x, — x; = h and x; — x, = —h the above reduces to
(3a — 2bh) 2 ( ~3a - bh) 2 f
- ( |- 5 | e-vf@=

xx1

bh — bh
n (2 +3“)——f<x2 SICE

The above equation gives the first row in the global stiffness matrix for any first order linear ODE

of the form ”Z_z + bu(x) = f(x). The above shows that numerical integration is only needed to be
X=Xp
performed on the term f (22 —x) f(x).

X=Xx1
Next the last equation is found, which will be the last row of the stiffness matrix. For the last node
only j = N the following results

X=XN N

f PN ([Z i (agp} + b(Pf)] —f(x)) dx =0

X=XN-1 1

Since ¢ domain of influence is xy_; < x < xy, the above simplifies to

X=XN

[ on([anor (096 + bowa) +ax (agh + bow)] - F0) dx =

Y=XN-1

. _ N0, _ 1 _ XN o, 1
Since pn-1 = ——, PN = 5 PN = —,—, Py = 5 the above becomes

X=XN

— - - 1 x—xy
[ R e R e IR

X=XN-1

55




2.1. Documents by Naseer M. Abbasi CHAPTER 2. SOME COLLECTED....

20
Which simplifies to
3a+b - - ~3a+2b (xy_q - G-t 1
N-1 182 +b 0 69;112))(951\11 ) qN( a+2b(xy 16h32CN))(xN 1~ ) - f (= xy_1) f(¥)dx = 0

XY=XN-1

Letting xy_1 — xy = —h in the above becomes

- -5 f (= xy-) f0) =

XXN]

bh —3a (Ba+2bh) 1
aN-1|—— |+ QN—

Hence the last row of the stiffness matrix can be determined directly except for the term under
the integral which needs to be evaluated using integration.

Now the equation that represents any internal node is found. This will be any row in the global
stiffness matrix between the first and the last row.

For any j other than 1 or N the following results

x=x; X=Xjy1 N
f 9 ( 291 (a01 + b )] -f <x>) axv [ o ([Eqi (a0 + b@-)] —f(x)) dx =0
x=xj_1 x=xj i=1
Where the integral was broken into two parts to handle the domain of influence of the shape
functions.

X=X X=Xy
[ 05 i (a0 + bya) + (a0 + by) = ) vt [ (g (a0 + by) + gjr (a0 + biyp) - £0) v
x=Xj_1 X=X
For
x]' —-X , -1
Xj1 SX <X, = ¢] /(ijl:Tf(Pj—l:?
-x , - x-x 1
X <X < Xy, 5 = r¢j=7/¢j+1=Tr¢j+1=E
Hence the weak form integral can be written as
x=x]'
X — X/‘,l —-a X]‘ -X
e Ul R R e R
X=x]',1
X=Xj+1
Xiy1 — X —a Xiy1— X
[ (5 ) () - )=
X=Xj
Which simplifies to
2 2 o
(-3 = b (%1 - x7)) (-1 — x)) ((3ﬂ = 2b (%1 - 7)) (31 - ) ) 1
gi-1 o2 +4; oz 5 f (x - x]-_l)f(x)dx+
X=X]'_1
2 2 X=Xt
(=30 =25 (3= %j:0)) (3 = 1) (Ba-b-%0)) (5 -xm) | 1 f
%’[ 2 +qj11 o2 5 f (xjH - x) flx)dx =0
X=XJ‘
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For equal distance between elements, x; — x;,1 = —h, x;_; — x; = —h the above simplifies to

30+ b IR Ga+2oh)H2) 1 30 + 2bi) 12
0];‘—1(( 4+ bh) )+q]-( )—— f (x—x]'_1)f(x)dx+qj(—( 4+ 2bh) )

6h? 6h? h 6h?
X=Xj_1
| Ga+biyi?\ 1 [
a+
e R
x:xj
Combining gives
30+ bh b Ba+bh\ 1[ e
-3a + a+
qul (T) + q] (T) + q]'+1 (T) - E [ f (X - x]-,l)f(x)dx + f (X/'+1 - x)f(x) dx] =0
x=x]',1 X=X]‘

The above gives the expression for any row in the stiffness matrix other than the first and the last
row. Hence the global stiffness matrix is

The above shows that the stiffness matrix can be build quickly without the use of any numerical
integration in this example. Integration is needed to evaluate the force (or load) vector. Depending
on the forcing function, this can be simple or difficult to perform.

Once the load vector is calculated, the unknowns g; are solved for. But before doing that, ¢, is first

1 X=X
W f (2 = x) f (x)
_ . x=x1
2bh—3a bh+3a X=X x=x
0 0 0 0 172 °
6 6 - ( [ (c=x) fdx+ [ (x3-x) f(x)dx)
-3a+bh 2bh 3a+bh 0 0 0 r 1 r=x1 X=X
6 3 6 n N X=X4
L R A I ;L [ =) f@x+ [ (rg=2) f(x)dx)
6 3 6 q3 =X x=x3
—-3a+bh 2bh 3a+bh .
0 0 —~ 3 —~ 0 S N -
. . . : X=%j Y=Y
0 0 0 —311'+bh @ 3a+'bh 0 h [’C:!l (X - x]‘—l)f(x)dx + x:{‘ (x]‘+1 - X) f(X)d.X'
6 3 6 IN-1 ' '
0 0 0 0 —3a6+bh % 3a+6—bh | qn | 1 =t =y
bh-3a  3a+2bh B [ [ -xna) f@dx+ [ (v =) f(x)dx
0 0 0 0 0 - - s =y
1 X=XN
A [ (r=xno) f(x)
XY=XN-1
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replaced by the initial condition given in the problem

[2bh-30  bh+3a
3 3 0 0 0
—3a+bh 2bh 3a+bh
6 3 6 0 0
~3a+bh 2bh 3a+bh
0 = 3 T 0
—3a+bh 2bh 3a+bh
0 0 6 3 6
Batbh  2bh
0 0 0 — =
—3a+bh
0 0 0 0
6
0 0 0 0 0

Now the first row is removed (and remembering to multiply ug by the first entry in the second

row) gives
[ —3a+bh 2bh 3a+bh
6 o I 6 0 0
~3a+bl 2bh 3a+bh
O % 3 = 0
~3a+bh  2bh 3a+bh
0 0 5 — .
—3a+bh 2bh
0 0 0 s 3
~3a-+bh
0 0 0 0 ‘
6
0 0 0 0 0

The first column is now removed after moving the first entry in the first row to the RHS to become

3a+bh
2bh

bh-3a

3a+bh
6
2bh
3
bh-3a
6

0

3a+bh
6
3a+2bh
6

0

3a+bh
6

3a+2bh

6

,uo_

L AN |

q2
q3

aN-1

q3

aN-1

0 ]

L IN ]

22

L -0 )

X=x1

% ( j (x = x1) f(x)dx + f (x3 — %) f(x)dx)

=x1 X=X

% L j (x — xp) f(x)dx + j (g — %) f(x)dx)

=X xX=x3

=% X=Xj+1
;% L [ (r=xm) f@dx+ [ (x50 =) f@)dx
=Xj-1 X=X
% (__f (- xni) f@)dx + _'f (xn — x) f(x)dx
’i:j (x —xn-1) f(%)

; Lf ) x4 1y - f(x)dx)

=X1

; (. f (x = xp) f(x)dx + f (x4 — x) f(x)dx)

=X xX=x3

X=X/

1
h
=xj1

X=Xj+1

f (x - x]-_l)f(x)dx + _f (x]-+1 - x) f(x)

! Lf - fde [ Gy )
P ) fQ)
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part of the load vector

Hers i Y
H S ) f@ae s [ -0 fee |- ()
[ 2bh 3a+bh =11 r=x2
5 . 0 0 0 (= -
SBesbh 2 dabh o 13 ;(. [ (=x) fdx+ [ (xg—x) f(x)dx)
6 3 6 q =X2 X=x3
_ 3

0 3a+bh @ 3a+bh 0 : N N

6 6 : 1 X=X XY=Xj41

: : S R E ;[, [ (x=x) f@dx+ [ (% —x)f(x)dx]
0 0 —3a+bh 2bh 3a+bh 0 : =Xj-1 X=Xj
6 3 6 Gn-1 :

—3a+bh 2bh 3a+bh — -

0 0 0 —_ 1 X=XN-1 X=XN

6 3 6 [LN] E({ [ -xno) fdx+ [ (n-x) f(x)dx]
bh-3a  3a+2bh =XN_2 X=2N_1
0 0 0 0
6 6 | =
W f (x = xn-1) f(x)
X=XN-1

Now the system above is solved for g, 43, -:-, gn. Once the g; are found, the solution is

Number Nodes

ux)= Y,

i=1

The Appendix shows a Mathematica code which solve the above general first order ODE. 4 first
order ODE solved for illustration and the solution is compared to the exact solution. Animation
was made to help illustrate this. the RMS error was calculated. The animations can be access by
clicking on the links below (shows only in the HTML version of this report).

3.2 Example Two. 2nd order ODE, Boundary value problem. Linear interpolation.
Symmetric weak form.

Now the FEM formulation is given for a boundary value, second order ODE with constant coeffi-

cients of the form )
d“u du
aﬁ + ba + cu(x) = f(x)

with the initial conditions u (xy) = uy (called essential Dirichlet condition), and the Neumann
boundary condition % =pfatL, forxyg <x<L

As before, the solution is assumed to be of the form

N
u= Eqi¢i
p

And the unknowns g; are found by solving N algebraic equations

L
f(f)jR(x)dx =0 j=1-N
x0
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Where R(x) is the ODE residual obtained by substituting the assumed solution into the original
ODE. Hence the above becomes (For simplicity, j = 1 -+ N is not written each time as it is assumed
to be the case)

L

du d
[ ¢,( b ) - f(x))

2

L
d du
fcj)]»ad—xzdx + fqb]( + cu(x) - f(x))

Applying integration by parts on f g{)] dx Since

i du)_ o du o du
dx aj dx = ady dx? acj dx

then integrating both sides of the above gives

2 L

L L

d du
J‘E (aqua)dX— faqb]d 2dx+faqb]—dx
0

X0 X0
L L
du d%u
[uqua] fa(p]d Sdx + fac,b]—dx
X0 X0
Hence L L
d2u dul" ,du
fa(p]ﬁdx = ﬂ(i)]a - fﬂ(i)]adx
X0 X0 xp

Substituting the above in equation Al gives

[ ¢]dx] f ¢>]d dx+f¢]( + cu(x) - f(x))dx— (A2)

Considering the term

dul" _ du B u
acy dx | = agy dx| _, acy dx
X -

X=X0
. - d . d .
First considering the term a(;b]»d—ﬂ . Since d—z = f at x = L then this term becomes af [¢]] . But
“lx=L X=

[(1)]] . is non zero only for the N th shape function evaluated at x = L. Since linear interpolation is
X=

used, the N*' shape function is ¢ = ’Hhi which have the value of 1 at x = xy. Hence
=ap whenj = N, otherwise,0
x=L

. . d . . .
Now considering the term aqb]-d—z , since at x = x; all shape functions will be zero except for ¢,

X=X0
which has the value of 1 at x = xq. Hence this simplifies to P

dx|. _
X=Xp
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N N _
Recalling that Z—z = %Elqiqbi = Elqiqbl’-. But at x = x( only ¢, is defined and its has the slope of 71,

hence
du

—aq1
adx B

h

However, g1 = 1y since that is by definition the initial condition. Finally one obtains

s[-(7 1)
ige| T .
dx X0 aﬁ ]:N

Hence the symmetric weak form equation (A2) can now be simplified more giving

mn _
{ [ ] 1} f¢]—dx+f¢]( + cu(x) — f(x))dx_ j=1--N (A3)

L when j = 1, otherwise 0

X=X0

ap
The trial function obtain by linear interpolation are used. These are shown in this table
i i i
! o 7

The global stiffness matrix is now constructed. For the first equation (which corresponds to the
first row in the global stiffness matrix) the result is

L
du
% fzngl—dx + f¢1 (b— + cu(x) - f(x)) dx =

N
Since u = Zqigbi, and since ¢ domain of influence is only from x; to x, then above becomes

alh f ¢1d (7191 + q2002) dlx + f¢1 (b— N1+ q202) + ¢ (101 + g22) — f(x)) dx =

Xz x) (x= X1)

But ¢; =
becomes

and ¢] = — and over the domain from x; to x,, ¢, = ,Pp == hence the above

X;

—f—(—)f B e w5 o

X1

The above simplifies to

h h? 2 3 2 6

~ ) B 3 _ 2 B 3 x2
aqy 1 (ax b(x1 — xp) ol —x)” axz) + Z—g (—axl + b (x1 - xp) 3 c(x1 —xp) + axz] B % f(xz — ) f(x)
X

2

_q_l[—ah+ax1—b(x1_x2)z—C(xl_xZ) axz) q( axq +b(x1
3 h? 2

x2

2 3
- - 1
X3) 3 c(xq - X7) + axz] -7 f(xz %) f(x)

X1
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The above gives the first row in the stiffness matrix. Since it is assumed that each element will
have the same length, hence x; — x, = —h, and the above becomes

b2 ch® b2 ch® 17
Z; (—ah+ax1—7+%—a 2) %(—ax1+7+%+ax2)—ﬁf(x2—x)f(x)=
X1

x2
a ax; b ch ax, ax;, b ch axz 1
‘ql( h*h—z‘f?‘h—z)W(‘h—z*z* )R] 20
X1
For the last equation, which will be the last row in the global stiffness matrix

ap - fa(pf\fj—;ldx+ f¢N(b€dl—Z+cu(x)—f(x))dx=0

XN-1 XN-1

N
Since u = ),4;¢;, and since ¢ domain of influence is only from xy_; to xy The above becomes
i=1

ap- f ”‘Pf\f% (QN-1¢N—1 +qnon) do+ f N (b% (QN—1¢N—1 + ‘1N¢N) +c (QN—1¢N—1 + ‘1N¢N) -f (x)) dx =

XN-1 XN-1

xNx -1

¢Nl__

But ¢y = W and ¢y = % and over the domain from xy_; to xy, Pn-1 =

hence the above becomes

o P

XN-1 XN-1

The above simplifies to

2 3 2 3
N1 by —xn)”  c(xnag — ) N by —xn)” oy — )
h2 (—axN 1- 5 - 6 +axy |+ h2 +axn-1 + 5 - 3

The above represents the last row in the global stiffness matrix. Since it is assumed that each
element will have the same length, hence xy_; — x5 = -}, and the above becomes

} bh2  ch3 bh2  ch 1
aﬁ—%(—axl\,_l—7+ ?+axN) ‘le (zsz 1+ — > + ?—axN)—ﬁ f (x—xn-1) f(x)=0

XN-1
axx_1 b ch ax axy._ b ch ax
aﬁ_qu(_%_E“' h§)+qN(%+§+§——N)——f(x xn-1) f(x) =

The expression for any row in between the first and the last rows is now found. For a general node

j the result is
Xj+1 Xj+1

fa¢]d—dx+ fqb]( + cu (x) - f(x)) dx=0

X/1 le

o)) <

- {DCN) 7
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Breaking the integral into halves to make it easier to write the trial functions over the domain of
influence gives

Xj+1

f a¢]—dx+fu¢]—dx]+ f ¢]( T eu(x) - f(x))dx+ f @( T eu(x) - f(x))

le x]l

Considering the first domain x]-_l < x < x;j gives

fa<,i)]—dx+ f@( + cu(x) — f(x))dx

] -1

-1
Over this range u = qi1¢iq + q;0; hence = gj1¢j_1 + q;¢; where ¢;; = h ,qb] 1= 509 =

Xle

;= hence the above becomes
‘1 11 / 1\ 1
- X=X - X;— X X=X
g e R
x,,l x]',l
(A4)
Now considering the second domain x; < x < x;,; gives
Xj+1 Xj+1
faqb]—dx + f(,‘b] ( + cu(x) - f(x)) dx
+17X -1
Over this range u = qi9; + gis19j41 hence = q4j; + 4j+19}1 Where ¢; = ’ . P = = Gja1 =
: hX] , qb] 1= hence the above becomes
ES g q Ty x q 1 x x xX—Xx
—a\ (G i - —g: - —x
—5[(7)(7]+%)dx+xf—]+h (b(#+qj+1ﬁ)+c(qj ]+h +gjn I ])—f(x))dx
7 7

Combine A4 and A5 and simplifying gives

+ ax;
2 6 ]

h? 2 3 2

2 3 X; X;
7 j+1
fin1 b(xi =) c(x=2n) X~ X as S
+ <= [—ax]- + 5 - 5 +axj |- f 7 f(x)dx - dex =0
%1 %
Since we are assuming each element will have the same length, hence x;_; - —h, x; = xj.1 = —h
and the above becomes

axj_q b ch ax; zzx] 2ch axjiq
gial-—7 —5+t - +t73|+4 + — -

h? 2 6 h w3 h?
ax b h ax xjx be xm
—ax; c ji+1 —Xj-1 1=
+qj+1(h—2f+§+g+ hf;)—f T fgi - [ I fagd =0
Xj-1 X

2 3 2 3 2
dji—1 [‘ﬂxj-l _ b (xj_l - Xj) B c (xj—l - x]‘) ]+ q; [axj—l N b (xj—1 - xi) _ c (xf_1 - xf) b (xj - xj+1) C( i
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The above gives any row in the stiffness matrix other than the first and the last row. Now we can

write the global stiffness matrix as

x2
-2 fw

Xj Xj+1

= % f (x _ xj—l) Fx)dx + % f (xj+1 - x) fx)dx
Xj-1 Xj

b [ G f) - ap

XN-1

We must first replace q; by the initial condition given in the problem, and we must remove the

a axy b ch  axp axy b ch axp 1T 71 ]
( h 2 2 + 3 hz) ( n2 2 6 + 2 0 0 A
axy b ch  axp axy 2ch  axs —axy n b ch axs 0 :
"2 2 6 W2 n2 3 h2 "2 2 6 W2
axj-1 b ch ax; axj-1 2ch  0Xj+1 —ax;j b ch axj+1 ) )
0 ( 226 2z T3 2 2 t2t et e 9
0 0 :
0 0 o b d ) (e b dneny)| [TV
22 6 2 h2 23 m )]l 9N |
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first row after that as follows

[( " ax;y b " ch  axy axq n b ch
o h 2 3 n2 it 2 6
axy b ch  axp axq 2ch
((-iese) (B3
0 0
0 0
0 0

o ]
0 0 92
eete) 0|
. g
e b ey (m b d e |{gne
”o 26 1 h2 23
114N |
x2
1
-0 fw
X1
X]' xj+1
1 1
;f (x—x]-_l)f(x)dx+ ﬁf (xj+1 —x) f(x)dx

x]-,l

29

i

% f (x = xn-1) f(¥) - ap

XN-1
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30
Multiply the first element in the second row by 1, and removing the first row gives

_axp b ch axp axy 2ch _axg axy b ch axz 2
(112 z+6+h2)”0 (h2 3w 2 T2t et e 0 :

_axy b ch axz axp  2ch _axy —axs b ch axy

0 (hz 2+6+h) (h2+3 "2 2 T2t e e qj

0 0 : . :
_axN-g E ﬁ axy axN-1 b ch  axy aN-1

0 0 ( 12 2+6+h2) (h2 t2tI TR N

%f(x—xz)f(x)dx+%f(x3—x)dx

%

Xj+1
1

x];l x]'

b [ - fo-ap

XN-1

= Ef (x - xj,l)f(x)dx + %f (xj+1 - x) fx)dx

Now moving the first element of the first row above to the RHS and removing the first column
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31
gives

[ axy " 2ch  axg —axy n b ch  axs 0 0 [ 92 ]

3w 2 276 :

0 axy b ch  axs axp  2ch  axy —ax; b ch  aXjy1

W2 2 6 n2 W2 3 2 2 2 6 "2 qj
axn—1 b ch  oaxy axn-1 b ch axy qN-1

0 0 ( h2 2+6+l12) (h2 +2+3 h2

X2 X3
1 1 ax; b ch  axp
Ef(x—xz)f(x)dx+Zf(x3—x)dx—(—h—2—5+€+h—2)u0
X1 x2

= i () fe+ [ (0 - 2) flgas
%f(x_xl\f—l)f(x)_ﬂﬁ

T
Now we solve for the vector [qz, qs, =, qN] and this completes our solution.

A Matlab implementation is below which solves any second order ODE. This code was used to
generate an animation. This animation can be accessed by clicking on the link below.

4 References

1. Methods of computer modeling in engineering and the sciences. Volume 1. By Professor
Satya N. Atluri. Tech Science Press.

2. Class lecture notes. MAE 207. Computational methods. UCI. Spring 2006. Instructor: Pro-
fessor SN Atluri.

3. Computational techniques for fluid dynamics, Volume I. C.A J.Fletcher. Springer-Verlag
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2.1.3 Solving u”

+ u =1 by collocation method using Mathematica

n411= Remove ["Global "]
n42)= (* This code solves u''''+u=1 by Collocation. By Nasser M. Abbasix)
P =1; (xright hand side of odex)
nBasis =5;
nPoints =5;
coeff = Table[a,, {n, 1, nBasis}]
basisFunction[x_, n_] :=coeff[[n]] (x (x-1))"
nBasis
ul[x_] 1= basisFunction[x, n]
n=1
error[x_] :=u''"'"'"[x] +u[x] -p
n
A= Table[error[x] /. x> {7}, {n, 1, nPoints -1} ;
2 nPoints -1
A =Flatten[Append[A, {a;+ay}]];
oue4= {a1, @z, Az, a4, as}
nsoi= Print["Set of equations to solve are "]
A // MatrixForm
N[%] // MatrixForm
Out[51]/MatrixForm=
_1_8a , 157528a, 19367560a; _ 3021693202,  11148778882;
81 6561 531441 43046721 3486784401
4 _ 143, 157660a, 5193568a;  377717720a, 11936808016as
81 6561 531441 43046721 3486784401
_q_2a , 19482, 5840a; 19602,  58288as
9 81 729 6561 59049
4 20a; 157864, 8983448a; 3404397043, 10726498400 as
81 6561 531441 43046721 3486784401
a; +ay
Out[52)//MatrixForm=
-1.-0.0987654 a; + 24.0098 a, + 36.4435 a3 - 7.01957 a5 - ©.319744 a5
-1.-0.17284 a; + 24.0299 a, + 9.77261 a3 - 8.7746 a4 + 3.42344 a5
-1.-0.222222 a; + 24.0494 a, - 8.01097 a5 + 0.298735 a4 + ©0.987112 a5
-1.-0.246914 a; + 24.061 a, - 16.9039 a3 + 7.90861 a, - 3.07633 as
a; +a,
n[53]:=
Solve[A == 0, coeff]
N[%]
2179796858395129608 273
out[53]= {{31 - - 5
52844426917618938573842
2179796858395129608 273 15566753176 631152407
dy; —> as -
52844426917 618938573842 ’ 105688 853835237877 147 684 ’
5183668474 801954587 13877 316 209 958489 }}
- - dg = —
211377707 670475 754 295 368 ’ 422755415 340951508 590 736
ousa= {{a1 > -0.0412493, a, - 0.0412493, a; > 6.000147289, a, > - 0.0000245233, as > - 3.28259 x 19’3}}
Printed by Wolfram Mathematica Student Edition
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report on the FEM solution to torsion problem of a rectangular

cross section

Solving the torsion problem for isotropic matrial
with a rectangular cross section using the FEM and
FVM methods with triangular elements
MAE 207, Computational methods. UCI
Fall 2006

Nasser M. Abbasi

2006 Compiled on September 4, 2021 at 6:34pm
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1 Introduction

We consider bar made of isotropic martial with rectangular cross section subjected to
twisting torque T. The following diagram illustrate the basic geometry.

‘ \/

X

DIMENSION OF BEAM

Figure 1: basic geometry

Experiments show that rectangular cross sections do wrap and that cross sections do
not remain plane as shown in this diagram (in the case of a circular cross section, cross
section do NOT wrap).
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T
Cross Seckinr s
do net remach plane
cfu()nj Forsim d/—
f‘écn“ananlqr Cross 56(/}7’0’7\
N

Figure 2: cross section wrap

This is another diagram showing a bar under torsion

RECTANGULAR BEAM J
UNDER PURE TORSION =

Figure 3: bar under torsion
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1.1 Problem setup

1.1.1 What are the assumptions?

1. The twist rate (called k in this problem) and defined as ‘;—j where « is the twist angle
is assumed to be constant.

2. Cross section can wrap also in the z direction (i.e. the cross section does not have
to remain in the xy plane) but if this happens, all cross sections will wrap in the z
section by the same amount.

3. Material is isotropic

1.1.2 What is the input and what is the output?
The input to the problem are the following (these are the known or given):
1. The width b and height a of the cross section.

2. Material Modulus of rigidity or sheer modulus G which is the ratio of the shearing
stress 7 to the shearing strain y

3. The applied torque T

4. ] the torsion constant for the a rectangular cross section. For a rectangular section
of dimensions 4, b it is given by

16 192 & 1 n b
= 2|1 — tanh [ —— 1
J 3" brd n:§5...”5 a (Za )) )

Hence the torsional rigidity GJ is known since G is given (material) and | is from above
(geometry).
1.1.3 The output from the problem (the things we need to calculate)

1. The stress distribution in the cross section (stress tensor field). Once this is found
then using the material constitutive relation we can the strain tensor field.

2. The angle of twist a as a function of z (the length of the beam).
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2 Analytical solution using Prandtl stress function

First we solve for the Prandtl stress function ® (x, y) by solving the Poisson equation

V20 (x,y) = -2GK

Where G is the sheer modulus and k is the twist rate (which was assumed to be constant).

The boundary conditions (® (x, y) at any point on the edge of the cross section and at the
ends of the beam) is an arbitrary constant. We take this constant to be zero. Hence at the
cross section boundary we have

D=0

The analytical solution to the above equation is from book Theory of elasticity by S. P.
Timoshenko and J. N. Goodier

326k & 1 ol cosh(5F) nx
@(x,y) = 3 E D)2 (1= “b cos (2—) (2)
T =135, 1" cosh (ﬂ) a
2a
where the linear twist k
T
k=—
GJ
Hence (2) becomes
2T & 1, | cosh(ZF) nmx
CD(x,y) =T Z e (-1) 2z |1- = | cos (5)

Where [ is given by (1)
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2.1 Stress components

D
Tyz = —a—x
0D
TXZ - ay
Tyx =

Hence
nmy
od 16Gka & 1 (@-1) cosh(—= nmx
e M Z —(-1) 2 1—#‘;) sn(z—)
x Tt n=1,3,5, - n cosh (%) a
a
and

d0 16Ta & 1 (1) nmx bnm nmy
DA (1) 2 (- cos (D5 sech S |sinn ()
w0 () (5 ()

Timoshenko gives the maximum sheer stress, which is /77, + 72, as

16Gka & 1 1
T [ — E — 1 —_
e us n=1,3,5, n? cosh (HZ—W)
a

2.2 Strain components

Given that E is Young’s modulus for the material, v is Poisson’s ratio for the material,

E . . - .
and G = 3iey) We can now obtain the strain components from the constitutive equations

(stress-strain equations) since we have determined the stress components from the above
solution.
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1

EX=E(GY—U(Gy+UZ))=O
1

&y = E(ay—v(ax+az)) =0
1

EZ:E az—v(ox+ay)):0
2(1+v) 1

Vay = 5 Toy = ETW =0
2(1+v) 1

Yyz = E Tyz_ETyz

_2(1+v) 1

Vxz E Txz a Txz

Hence only y,, and y,, are non-zero.

2.3 Determining the twist angle o

If we look at a cross section of the bar at some distance z from the end of the bar, the angle
that this specific cross section has twisted due to the torque is a.
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v
X X

Before twist After twist. particle at blue
location moved to Red location

¥ X

The twist angle

Figure 4: twist angles

This angle is given by the solution to the equation

da(z)
dz

k

But k is the linear twist and is given by k = Gl] hence the above equation becomes

da(z) T

dz GJ

Hence

a(z) = GZIZ +C
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Where C; is the constant of integration. Assuming a = 0 at z = 0 we obtain that
T
a(z) = =z

GJ

and using the expression ] given in equation (1) above we can determine « for each z.

M
Vv

LJ—»

j y

2.4 Displacement calculations

a

B |
A\ Y
*/_3 1
xy) v
r=Jx?+y?
N u = ra(-sinp)

vV = ra(cosf)
Finding displacements for coordinates.

Valid for SMALL twist angle alpha

Figure 5: Displacement calculations

r=q/x2+12

u=ra (— sinﬁ)

v=ra (cos ﬁ)
we see that
. Y
sinf = =
B r
X
cosff=—
P r

77




2.1. Documents by Naseer M. Abbasi CHAPTER 2. SOME COLLECTED....

10

Hence

u=-ay
v =ax

T
Where o = G_]Z

3 References

1. Mathematica Structural Mechanics help page
2. MIT course 16.20 lecture notes. MIT open course website.

3. Theory of elasticity by S. P. Timoshenko and J. N. Goodier. chapter 10
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2.1.5 Comparing analytical solution with the FEM solution

On verification of FEM solution to Poisson
equation by comparing it to the analytical solution
shown in Timoshenko
MAE 207, Computational methods. UCI
Spring 2006

Nasser M. Abbasi

May 28, 2006 Compiled on September 4, 2021 at 7:57pm
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1 Introduction

A Matlab function was written which plots the analytical solution given by Timoshenko/-
Goodier on pages 310-311 in the Theory of Elasticity. The analytical solution was
compared to the solution generated from the FEM solution. See this page for more infor-
mation and background on the problem and the analytical solution.

The absolute and percentage differences between the solutions was obtained and com-
pared.

The matlab code used was provided thanks to Qing Wang which solves the problem by
FEM. It was called to obtain the FEM solution. Minor changes made in the code to allow
one to call it as a function and to use the same contour levels. The appendix contains the
Matlab code.

2 Conclusion

The solution by FEM agrees to a very good approximation with the analytical solution.

21 by 41 nodes were used for FEM, we see that, in absolute value, the maximum difference
was 0.00009481788675562430 At nodes (11,10) with symmetry at the other half of the cross
section as shown in the plot below (The plot is here on a separate page)

Figure 1: Solution curves

By making the grid smaller, better approximation can be obtained. This analysis was
done using 21 by 41 nodes nodes for the rectangular cross section. More elements should
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result in better approximation.

In terms of percentage differences, the maximum percentage difference occurred at the 4
corners.

Given the above grid size, we see from the plots that there is a maximum of 1% difference
between the analytical solution and the FEM solution. This occurred near the 4 corners
of the cross section and was smallest in the middle. We need to better investigate why
this is.

This below is a plot showing the percentage difference between both solutions.

mesh view of percentage difference between solutions

08

0.8

0.4

0.2

__jﬁ“ﬁ

e 5 Al
25 S5 S RN I AT Y,
;s‘:\%?s;.‘:&\ e 3
S o
TR SaTneaa T 50
Yl -
15 ' T \‘:“\‘3“2&?@“‘\\\\\ M
\\\‘i{;{\{‘{{(\‘\\\\\\ @
" T
20

Figure 2: difference in percentage

Below shows a listing of the nodal values for the first 4 columns in the solution matrix.
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Location of largest % difference between Analytical and FEM solutions are at node near the corners

ANALYTICAL SOLUTION

—~ - R \\\ N
First 4 columns FEM SOLUTIO

First 4 columns

\
K>> 2(:,1:4) K>> fem_solution(:,1:4)
\
ans = ans = \
) o / o o N oo . 0.
0. /0.00 11 0.01050343454601 0 0.00456426271831  1).00788479376139  0.01046187148736
0. 0.01 147 0.01899279506363 -0.00000000000000~__0.00787225711184 _-0.01401304083990  0.01892889195460
0.00000000000000 0.01893172530215  0.02587172262713 o ov & 0.01886622053176  0.02580070707539
0.00000000000000  0.01244143498555  0.02279893291526  0.03143697003105 0 0.01240842191303  0.02273940932260  0.03136616626871
0.00000000000000  0.01401063607998  0.02587080239600  0.03589618891092 0 0.01398255344036  0.02581682857690  0.03582812145294
0.00000000000000  0.01522981822719  0.02826689465814  0.03939313152396 0 0.01520496327151  0.02821723009170  0.03932817386136
0.00000000000000  0.01614281412972  0.03006552477127  0.04202706968694 0 0.01612006955400  0.03001895465701  0.04196477327024
0.00000000000000  0.01677777563594  0.03131825945426  0.04386554462739 -0.00000000000000  0.01675636028748  0.03127374571212  0.04380519396305
0.00000000000000  0.01715230618335  0.03205781625163  0.04495228153952 0 0.01713162588381  0.03201447394092  0.04489309870804
0.00000000000000  0.01727611422266  0.03230238760955  0.04531187952838 0 0.01725566930684  0.03225942545973  0.04525308465025
0.00000000000000  0.01715230618335  0.03205781625163  0.04495228153952 0 0.01713162588381  0.03201447394092  0.04489309870804
0.00000000000000  0.01677777563594  0.03131825945426  0.04386554462739 0.00000000000000  0.01675636028748  0.03127374571212  0.04380519396305
0.00000000000000  0.01614281412972  0.03006552477127  0.04202706968694 0 0.01612006955400  0.03001895465701  0.04196477327024
0.00000000000000  0.01522981822719  0.02826689465814  0.03939313152396 0 0.01520496327152  0.02821723009170  0.03932817386136
0.00000000000000  0.01401063607998  0.02587080239600  0.03589618891092 0 0.01398255344036  0.02581682857690  0.03582812145294
0.00000000000000  0.01244143498555  0.02279893291526  0.03143697003105 0 0.01240842191303  0.02273940932260  0.03136616626871
0.00000000000000  0.01045229194647  0.01893172530215  0.02587172262713 0 0.01041172488916  0.01886622053176  0.02580070707539
0. 0.0079: 0.01408098533147  0.01899279506363 0.00000000000000  0.00787225711184  0.01401304083990  0.01892889195460
0. 0. 3451 0.00 11 0.01050343454601 0  0.00456426271831  0.00788479376139  0.01046187148736
0 o 0 o 0 0 0 o
K>> K>

Figure 3: numerical difference

The plot below shows the absolute difference between the analytical and the FEM solu-
tions in 3D mesh.

mesh view of difference between solutions

Figure 4: 3D mesh plot of the difference

The plot below is the analytical solution (The wrapping function, i.e. the solution function
®(x, y) shown using larger number of contours)
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analytical solution 10 LAPLACIAN(PHI = 1, more lines

D&y

Figure 5: analytical solution

The plot below is a contour plot of the analytic solution.

analytical solution to LAPLACIAN(PHY = 1
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Figure 6: contour plot of the analytic solution

The plot below is a contour plot of the FEM solution to compare with the above.
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FEM solution to LAPLACIAN{PHI=1
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Figure 7: FEM contour plot

The plot below is the above 2 contour plots side-by-side.
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Figure 8: contour plots side by side

This below is a mesh plot of the analytical solution and FEM solution side by side.
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ANALYTICAL SOLUTION
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Figure 9: mesh plot side by side
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8
3 Appendix
3.1 Modified Qing Wang matlab function
function fem_solution=poisson_fem_as_function
% original code by Qing Wang, UCI
b
%minor changes by Nasser M. Abbasi, UCI. on May 28, 2006:
% - made it a function to be able to call it.
% - changes to contour levels to make it the same as analytical
% soltution for better comparison.
% - changed the grid to go from -a/2,a/2 instead of 0,a and smiliarly
% to the b side.
A
% SOLVE THE FOLLOWING PROBLEM USING FEM
h
A LAPLACIAN(C PHI ) =1
A
format long;
fc=1.0; % f constant
bc=0.; % The Dirichlet boundary condition, constant
W=1.0; % the width of the rectangle
L=2.0; % the length of the rectangle
N=20; % the number of elements in Y direction
M=40; % the number of elements in X direction
dx = L/M; % dx
dy = W/N; % dy
D=(N+1)*(M+1) ; % The dimension of the global stiffniss matrix or number of nodes
s=zeros(D,D); % global stiffness matrix
f=zeros(D,1); % load factor
v=zeros (N+1,M+1); % the collocated results for plotting
xindex=0;
yindex=0;
x1=0; x2=0; x3=0; x4=0; % (x1,x2,x3) and (x4,x2,x3) are summits of the two trangles in one
j1=0; j2=0;
% generating the global stiffness matrix and load vectors
for yindex = 1:N
for xindex = 1:M
x1 = xindex + (yindex-1)*(M+1);
x2 = 1+ x1;
x3 = xindex + yindex*(M+1);
x4 = 1+ x3;
j1 = dxxdy; ' the Jacobian of the first trangle
s(xl,x1) = s(x1,x1)+(dx"2+dy~2)/(2%j1);
s(x1,x2) = s(x1,x2)-dy~2/(2%j1);
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s(x1,x3) = s(x1,x3)-dx"2/(2%j1);
s(x2,x1) = s(x2,x1)-dy~2/(2%j1);
s(x2,x2) = s(x2,x2)+dy"2/(2*j1);
s(x2,x3) = s(x2,x3);

s(x3,x1) = s(x3,x1)-dx"2/(2*j1);
s(x3,x2) = s(x3,x2);

s(x3,x3) = s(x3,x3)+dx"2/(2*j1);
f(x1,1) = £(x1,1)+ fc*j1/6;
£(x2,1) = £(x2,1)+ fc*j1/6;
f(x3,1) f(x3,1)+ fcxj1/6; A

j2 = dxxdy;

s(x4,x2) = s(x4,x2)-dx"2/(2%j2);
s(x4,%x3) = s(x4,x3)-dy~2/(2%j2);
s(x2,x4) = s(x2,x4)-dx"2/(2%j2);
s(x2,x2) = s(x2,x2)+dx"2/(2%j2);
s(x2,x3) = s(x2,x3);

s(x3,x4) = s(x3,x4)-dy~2/(2%j2);
s(x3,x2) = s(x3,x2);

s(x3,x3) = s(x3,x3)+dy~2/(2%j2);
f(x4,1) = £(x4,1)+ fc*xj2/6;
f(x2,1) = £(x2,1)+ fc*xj2/6;
£(x3,1) f(x3,1)+ fcxj2/6;

end
end

% applying BC
for xindex=1:M+1

s(xindex+N*(M+1),:) = zeros(1,D);
s (xindex+N* (M+1) ,xindex+Nx(M+1))=1;
f (xindex+N*x(M+1) ,1)=bc;
end % the bottome and upper BC
for yindex=1:N-1
s(1+yindex* (M+1) , :)=zeros(1,D);
s(1+yindex* (M+1) ,1+yindex* (M+1))=1;
f (1+yindex* (M+1),1)=bc;
s((1+yindex)* (M+1),:)=zeros(1,D);
s((1+yindex)* (M+1) , (1+yindex)* (M+1))=1;
f((1+yindex)* (M+1) ,1)=bc;
end % the left and right side BC
g=s\f; % solve q
% generating visulized results
for yindex=1:N+1

Process the first trangle in one block

% the Jacobian of the second trangle
s(x4,x4) = s(x4,x4)+(dx"2+dy~2)/(2%j2);

Process the second trangle

s(xindex,:) = zeros(1,D); s(xindex,xindex)=1; f(xindex,1)=bc;
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for xindex=1:M+1
v(yindex,xindex) = q((M+1)*(yindex-1)+xindex);
end
end

figure;

[X,Y] = meshgrid(-L/2:dx:L/2,-W/2:dy:W/2);

[C,h] = contour(X,Y,v,10);

clabel(C,h)

colormap cool

title('FEM solution to LAPLACIAN(PHI)=1');

%figure;

%contour(s); title('Global stiffness matrix contour plot');

fem_solution = v;

10
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11

3.2 Code used for plotting

Here is the Matlab function used to plot the analytical solution. This function makes a
call to the above FEM function.
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h
h
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h
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h
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h
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h
h
h
h
h
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h
h
h
h
h
h
h
h
h
h

function nma_verify_MAE207_solution
%function nma_verify_MAE207_solution

Display the solution of the poisson equation by
plotting the analytical solution to the torsion
problem on a rectangular cross section.

see report and references on
http://12000.0rg/my_courses/spring_MAE_207/
by Nasser Abbasi.

The cross section is

a a
B s
| )
| +
| )
B +

This Analytical solution is to the following problem
LAPLACIAN(C PHI ) = - 2 G K

To verify the analytical solution against the FEM solution, which solves
LAPLACIAN( PHI ) =1

then in this analytical solution we set G*¥K=-0.5
But k = T/(GxJ), hence we need to have
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A

YA T/J = -0.5
)

% change history

% name date changes

% nma 052806 started

close all;
clear all;

a=1; % meter

b = 0.5; ¥ meter

T_OVER_J = 0.5; % SET THIS TO MATCH FEM CONSTANT f=1, see above
% I think the Matlab FEM code should have used -1

% but it is easier to change this to +0.5 to match them

dx
dy

2%a/40;
2%b/20;

%applied_torque = 1 7 Newton-meter  NOT USED
%J = get_torsion_constant(a,b); NOT USED

[X,Y]
big_term

meshgrid(-a:dx:a, -b:dy:b);
0;

NUMBER_TERMS = 100;

for n = 1:2:NUMBER_TERMS
big_term = big_term + (1/n73)*(-1)"( (n-1)/2)%
(1- (cosh(n*pi*Y/(2%a))./(cosh(n*pix*b/(2*a))))) .*cos(nxpi*X/(2*a));
end
%Z = 32xapplied_torquexa”2/(J*pi~3) * big_term;
Z = 32xT_OVER_J*a~2/(pi~3) * big_term;
YA
% DONE. Now do plots
YA
figure;
[C,h] = contour(X,Y,Z,10);
clabel(C,h)
colormap cool
title('analytical solution to LAPLACIAN(PHI) = 1');
xlabel('x'); ylabel('y');
axis square

figure;
[C,h] = contourf(X,Y,Z,30);

12

90




2.1. Documents by Naseer M. Abbasi

CHAPTER 2. SOME COLLECTED...

colormap cool
title('analytical solution to LAPLACIAN(PHI) = 1, more lines');
xlabel('x'); ylabel('y');

0
/A
% now obtain the FEM solution and compare point-to-point

A

fem_solution = poisson_fem_as_function();

difference = fem_solution-Z;
abs_difference = abs(difference);
figure;

[C,h] = contourf(abs_difference,13);
Y%clabel(C,h)

colormap cool

title('absolute difference between solutions');
xlabel('x'); ylabel('y');

figure;
mesh(abs_difference);
title('mesh view of absolute difference between solutions');

figure;
mesh(Z); title('mesh view of analytical solution');

figure;
mesh(fem_solution); title('mesh view of numerical solution');

figure;
[nRow,nCol]l=size(Z);
per_diff=zeros(nRow,nCol) ;
for i=1:nRow
for j=1:nCol
if abs(Z(i,j))>eps
per_diff(i,j)= 100* abs_difference(i,j)/Z(i,j);
else
per_diff(i,j)= 100* abs_difference(i,j);
end
end
end
mesh(per_diff); title('mesh view of percentage difference between solutions');

figure;
[C,h] = contourf (per_diff,13);

13
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14

Y%clabel(C,h)

colormap cool

title('), difference between solutions');
xlabel('x'); ylabel('y');

[r,c]=find(abs_difference==max(abs_difference(:)));
fprintf ('Maximum difference at node [}d,%d]\n',r,c);

end

Y%k ok ok ok ok kK ok Kok K

yA

yA

O stk stk ok ok ok sk sk ok ko ok

function J = get_torsion_constant(a,b)
NUMBER_TERMS = 1000;

fixed_term = pi*b/(2xa);
J =0;
for n=1:2:NUMBER_TERMS

J = J + tanh(n*fixed_term)/n”5;
end
JJ
JJ
end

J * 192%a/(b*pi~5);
16%a~3*b/3 * (1 - J);
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2.1.6 A note on Gaussian Quadrature for one dimension

Review of Gaussian Quadrature method
MAE 207, Computational methods. UCI
Spring 2006

Nasser M. Abbasi

Spring 2006 Compiled on September 4, 2021 at 9:07pm

Contents

1 The problem 1

2 Solution 2
21 GaussQuadrature. . . . . . . . ... 4

3 References 12

1 The problem

y=f(x)
W
a b~ X

b
Area under curve = If(x) dx

a

Figure 1: Area under the curve
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To find a numerical value for the integral of a real valued function of a real variable over
a specific range over the real line. This means to evaluate

b
I= f F(x) dx
a
Geometrically, this integral represents the area under f(x) froma to b

2 Solution

f(x2) f(X3)

f(x1) f(X4)
~~N
y=f(x) f(x)
11234
a  Ax b~ %

b 4
'[f(x) dx ~ D Axf(xi)
5 1

Figure 2: Integrating a function

We can always approximate the area by dividing it in equal width strips and then sum
the areas of all the strips.

In general, there will always be an error in the estimate of the area using this method. The
error will become smaller the more strips we use (which implies a smaller strip width).
Hence we can write

b N
f F(x) dx = (ZAx f(x,-)) +E
- i=1

Where E is the error between the actual area and the approximated area using the above
method of numerical integration. N above is the number of strips or can also be refereed
to as the number of integration points.
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Instead of keep referring to the ‘'width of the strip” all the time, we will call this quantity
the weight w; that we will multiply the value of the function with to obtain the area.
Hence the above becomes

b N
[reyax= (Zwi f(x») +E
p i=1

Using implied summation on indices the above becomes

b
ff(x) dx = w, f(x) + E

In the above we divided the range of the integration (the distance between the upper
and lower limits of integration) into equal intervals. We can decide to evaluate f(x;) at
the middle of the strip or at the start of the strip or at the end of the strip. In the diagram
above we evaluated the f(x) at the left end of the strip.

Our goal is to evaluate this integral such as the error E is minimum and using the smallest
number of integration points. In a sense this can be considered an optimization problem
with constraints: minimize the error of integration using the smallest possible number of
points.

To be able to do this minimization, we need to consider what are the variables involved.
We see that there are two degrees of freedom to this problem. One is the width of the
strip or w;. We do not have to use a fixed value of width, we can use different width for
different strips if the resulting integral gives better approximation.

The second degree of freedom is the point at which to evaluate f(x;) associated with each
strip. In the example above we choose to evaluate f(x;) at left end point of the strip. We
can choose to select a different x; point if this will result in a better approximation.

This is the main idea of Gauss Quadrature numerical integration. It is to be able to choose
specific values for these two degrees of freedom, the w; and the x;.

It turns out that if the function f(x) is a polynomial, then there is an optimal solution.
There is an optimal {w;, x;} for each polynomial of order #.

We can determine these degrees of freedom such that the error E is zero, and with the
least possible number of integration points. We are able to tabulate these two degrees of
freedom for each polynomial of specific order. In other words, if the function f(x) is a
polynomial of order n then we know before the computation starts what these 2 degrees
of freedom should be. We know the locations of x; and we know weight w; that we need
to multiply f(x;) with to obtain the area with minimum error.

You might ask how can this method of integration know the locations of the integra-
tion points x; beforehand without being given the integration range of the function to
integrate? It turns out that we will map f (x) into a new known and specific range of
integration (from -1 to +1) for the method that we will now discuss.
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2.1 Gauss Quadrature

From now on we will assume the function f(x) to be integrated is a polynomial in x of
some order 7.

Gauss quadrature is optimal when the function is a polynomial

The main starting point is to represent the function f(x) as a combination of linearly
independent basis.

Instead of using strips of equal width, we assume the width can vary from one strip to
the next. Let us call the width of the strip w;. Instead of taking the height of the i’ strip
to be the value of the function at the left edge of the strip, let us also be flexible on the
location of the x associated with strip w; and call the height of the strip w; as f(x;) where
x; is to be determined. Hence the above integration becomes

b N
f F(x) dx = (Zwi f(xi)) +E
p i=1

N
~ Y w; f(x)
izl

So our goal is to determine w; and x; such as the error E is minimized in the above equation.

We would really like to find w; and x; such that the error is zero with the smallest value
for N.

It seems as if this is a very hard problem. We have 2N unknown quantities to determine. N

different widths, and N associated x points to evaluate the height of each specific strip at.

And we only have as an input f(x) and the limits of integration, and we need to determine
these 2N quantities such that the error in integration is zero.

In other words, the problem is to find w;, x; such that

b
I= [ dx = wif () + waf () + - wnf (xn) M

One way to make some progress is to expand f(x) as a series. We can approximate f(x) as
convergent power series for example. If f(x) happens to be a polynomial instead, we can
represent it exactly using a finite sequence of Legendre polynomials. It is in this second
case where this method makes the most sense to use due to the advantages we make
from the second representation.

We show both methods below.

Expanding f(x) as convergent power series over the range 4, b gives

f(x)=ﬂo+a1x+a2x2+---amxm+... (2)
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Substituting (2) into (1) gives

b
I= f(a0+a1x+a2x2+ e A XM+ ) dx = wqf (x1) + W f (xp) + -+ wnf (xn) (3)

But
b b b b b
f(ﬂo +ayX + X% + o @, X"+ ) dx = faodx+ fa1x dx + fazxz dx + - + famx’” dx + -+
a a a a a
b2 _ 112 b3 _ 113 bm+1 _ am+1
:ao(b—a)+a1( 7 ) +a2( 3 ) + - +am%+
Substituting the above into (3) results in
) (b2 _ az) (b3 _ a3) (bm+1 _ am+l)
— + + + cee + - + cee
ag (b —a) + a 2 az 3 Am —
= wy f (x1) + wof (x2) + -+ + wnf (xn) (4)
But from (2) we see that
f(x1) = ag + apxg + axx3 + - @, X+ -
f(xp) = ag + arxy + axx3 + - @, X4 + -
Fxn) = ag + agxy + apxd + - @ x4+ o
Substituting the above into (4) gives
(b2 _ az) (b3 _ a3) (bm+1 _ am+l)
ao(b—a)+a1 5 + ay 3 +'--+amT+---:

wq (ao +ayx + a3 + e, + )

+wW, (ao +ayXy + AxX5 + o A, X8 + )

+wy (ao + AN + GX3 + - 3, X+ )
Rearranging gives

P-a) (-2 (0" = a")
+ay +ota,——— =
2 3 m

ag (wy + wy + -+ + wy)

ag(b—a)+ay

+aq (w1x1 + WrXy + -+ + ZUN.X'N)

+ad, (wlx% + wa% + -0+ waIZ\])

+a,, (wle + Woxy + - + waI’(’,>
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6
Equating coefficients on both sides results in
W1+ZU2+"'+ZUN:b—tZ (5)
(2 -e?)
W1X1 + WyXyg + -+ + WNXN = 5
3_ 3)
W32 2 2 _ (b a
(b" —a™)
WX+ wox 4 -+ Wy = ——
m

Since we have 2N unknown quantities to solve for (N weights w; and N points x;) we need
2N equations. In other words, we need to have m = 2N. The above set of simultaneous 2N
equations can now be solved for the unknown w;, x; and this will give us the numerical
integration we wanted.

The above assumed that the function f(x) can be represented exactly by the power series
expansion with m terms.

We now consider the representation of f(x) as a series of Legendre polynomials. We do
this since when f (x) itself is a polynomial. We can represent f(x) exactly by a finite number
of Legendre polynomials. But since Legendre polynomials P, (x) are defined over [-1,1]
we start by transforming f(x) to this new range and then we can expand the mapped f(x)
(which we will call g (€)) in terms of the Legendre polynomials.

Linear
transformation
f(x)

y=f(x) 9()

Figure 3: Mapping

An easy way to find this mapping is to align the ranges over each others and take the
ratio between as the scale factor. This diagram shows this for a general case where we
map f(x) defined over [g, b] to a new range defined over [c;, ¢;]
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f(x)

~

\
\

/

/

\ | // dx _ _b-a
\\ k 9() // d¢ Co—C1
\ 1
! I ’/

C1 dé é’

C2

Figure 4: Mapping over new range

We see from the diagram that

C =0 + dc
But %< is the same ratio as —~. Hence
dx €21
dx b-a
- = (6)
dC  c—¢
The above is called the Jacobian of the transformation. Now, From the diagram we see
that
dx=x-a
And
dC=C-q
Eq. (6) becomes
x—a b-a
C-c1 -0
Hence we obtain that
x—a
=—— (- +
(= (@-a)+a
And
b-a

X =

(C—c1)+a
-0
For the specific case when ¢; = -1 and ¢, = +1 the above expression becomes
xX—a
=—(2)-1
(=2—0

_2x-2a-(b-a)
B b-a
_2x—a—b

T b-a
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Therefore

x:b;za(c+1)+a
_(b-a)C+(a+Db)

2

Before we proceed further, It will be interesting to see the effect of this transformation on
the shape of some functions. Below I plotted some functions under this transformation.
The left plots are the original functions plotted over some range, in this case [4,10] and
the right side plots show the new shape (the function g (C)) over the new range [-1,1]
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Sin [x] mapped
L 0.75
0.5 0.5
0.25
2 4 8 \10 - -0. .
\\ 105 0.5
-0.5 0.5
1 -0.75
Cos [x] mapped
1
-1 -0.5 0.5
0.5 0.9
0.8
2 4 6 10
0.7
-0.5
0.6
-1
X2 mapped
100 1
%0 0.8
0.6
60
0.4
40 02
! 2 7 6 8 10 -1 -0.5 0.5
2+x+4x"3+x"4 mapped
14000 8
12000 B
10000
8000 4
6000
4000 ///,,/"”4}
2000 1,7 205 0.5
2 4 6 8 10 -2
Exp [X] mapped
20000 2.5
15000 2
1.5
10000
5000 __’,,,_—/"523
2 4 6 8 10 -1 -0.5 0.5
Tan [x] mapped
1.5
600
1
400 0.5
200
J -1 -0.5 0.5
0.5
2 4 6 10 a
-200
-1.5

Figure 5: plotted some functions under this transformation
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10

We must remember that in the following analysis, we are integrating now the function
g (C) over [-1,1] and not f(x) over [a, b]. Hence to obtain the required integral we need to
transform back the final result. We will show how to do this below.

We can approximate any function f(x) as a series expansion in terms of weighted sums
of a set of basis functions. We do this for example when we use Fourier series expansion.
Hence we write

f@) = Yia®i(x) (7)

We can give an intuitive justification to the above formulation as follows. If we think in
terms of vectors. A vector V in an n-dimensional space is written in terms of its compo-
nents as follows

V= aijeq + arey, + - aney
N
= Zaiei
i

Where e; is the basis vectors in that space.

If we now consider a general infinite dimensional vector space where each point in that
space is a function, then we see that we can also represent that function as a weighted
series of a basis functions just as we did for a normal vector.

There are many sets of basis functions we can choose to represent the function f(x) with.
The main requirements for the basis functions is that they are complete (This means they
span the whole space) and there is defined an inner product on them.

For our purposes here, we are interested in the class of function f (x) that are polynomials
in x. The basis we will select to use are the Legendre basis as explained above. To do this,
we transform f (x) to ¢ (C) as shown above and then now the integral becomes

b 1 b-0)
Jrome= [ Fen(“5 2]

(b—a)
2

b 1 (b—a)
[reoix= [==50 ac
a -1

. b-a) . . . . .
Since % is the Jacobian of the transformation, we write the integral as

This is because we found that dx =
integral becomes

dC from above. If we call f (x(C)) as g(C) the

fb fexdx fl 130 dc
a -1
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11

1
Since the Jacobian is constant in this case, we will only worry about f g(0) dC and we

-1
just need to remember to scale the result at the end by J. This is the integral we will now
numerically integrate. Equation (7) is now written as

g0 =Y aP; ()
i
Where P; (C) is the Legendre polynomial of order i and g () is a polynomial in C or some

order m.

Now we carry the same analysis we did when we expressed f(x) as a power series. The
difference now is that the limit of integration is symmetrical and the basis are now the
Legendre polynomials instead of the polynomials x" as the case was in the power series
expansion. So now equation (1) becomes

1
1= [ 80 dC= wig(€) + g Q) + -+ + wng (@) (®)
g}

And equation (2) becomes
§(C) = agPq () + a1 P (0) + azP3 (C) + -+~ 4, Py, (O) + - )
Substituting (9) into (8) we get the equivalent of equation (3)

1
I= f(aopo (©) + a1P1 (0) + azPy (O) + -+ a, Py, (C) + ) dC (10)
-1
= w18 (C1) + wpg (Co) + -+ + wng (Cn)
Therefore
] Jupcs [orice fursaces |
(a0P0+a1P1+a2P2+---aum+---) dC: aOPOdC+ alpldC+ azpde+---+ aumdC + .-
-1 -1 -1 -1 -1
=ag(2) + 310+ a0+ - +a0 + -
= 2610

The above occurs since the integral of any Legendre polynomial of order greater than
zero will be zero over [-1,1]

Substituting the above into (10) we obtain
I'=2ay = w18 (C1) + wag (Ca) + -+~ + wng (L) (11)
But from (9) we see that

8(C1) = agPy (Gq) + a1 Py (Gy) + aPy (Gg) + +++ 4y, Py, (Gy) + -+
8(C) = agPy (Cp) + a1 Py (Cp) + apPy (Cp) + +++ 4y, Py, (Cp) + -+

g (Cn) = agPy (Cn) + a1P1 (Cy) + apP5 (CN) + ++- 4, Py, (C) + -+
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12

Substituting the above in (11) gives

2ay = wy (agPy (C1) + a1P1 (C1) + 4Py (1) + -+ 4y, Py, (Cy) + -+2) +
+ Wy (agPo (C) + a1P1 (Cp) + Py (Gp) + +++ 4y, Py, (5) + +++) +

+ wy (agPy (Cn) + a1P1 (C) + apPo (CN) + ++- ay, Py, (Cn) + +++)

Rearranging results in

2ag = ag (w1 Py (Cy) + WPy (Cp) + -+ + wnPy (Cn))
+ a1 (w1 Py (Gq) + wyPy (Gp) + -+ + wnPy (Cy))
+ ces

+ y (W1 Py, (C1) + wo Py, (Gp) + -+ + wn Py (CN))
Equating coefficients gives

2 = w1 Py (C1) + wpPy (Cp) + -+ + wnPy (Cn)
0 = w1 Py (1) + WPy (Gp) + -+ + wnPq (TN)
0 = w1 Py (Cq) + wyPp (Cp) + -+ + wnPp (CN)
0 = wy Py, (C1) + wo Py, (G) + -+ + WPy, (CN)

If we select the points (; to be the roots of P;_; we can write the above as

2 = w1 Py (C1) + wpPy (Cp) + - + wnPy (CN)
0 = w1 Py (1) + wyPq (Gp) + -+ + wnPq (TN)
0 = w1 Py (Cq) + wyPp (Cp) + +++ + wnP; (TN)

0 = w1 Py, (1) + wyPy, (Cp) + -+ + wnPy, (Cn)

3 References

1. Mathematical Structural Mechanics help page
2. MIT course 16.20 lecture notes. MIT open course website.

3. Theory of elasticity by S. P. Timoshenko and J. N. Goodjier. chapter 10
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2.2.1 Review of FEM document. Updated May 25,2006

Notes on Application of Finite Element Method to the
Solution of the Poisson Equation

Consider the arbitrary two dimen- do
sional domain, € shown in Figure 1.
The Poisson equation for this do-
main can be written

Vi =1 (1)
¢ =0 onodf) (2)

where we have specified a constant
right hand side, and dirichilet bound-
ary conditions.

Applying the weighted residual
method, we get:

Figure 1: Domain for the Poisson Equation

/(V2u —Drd2=0 (3)
Q

Now, making use of the diver-
gence theorem to reduce the order of the weighted residual equation we may express
the integral as

Q

/ vVu-ndQd— | Vu- VvdQ — / vdQ2=0 4)
o Q

Equation 4 is called the symmetric weak form of the Poisson equation. The equation
contains three separate integrals. A boundary integral involving the flux of u, the
symmetric integral for the integral domain and the load integral. Examining Equation 4
we see that an amissable solution for u and v only requires a C° continuous function.
As long as the test function v satisfies this requirement may used. So, for convenience
we may also specify that v vanishes at the boundary, thus the boundary integral also
will vanish.

Due to the arbitrariness of the solution domain, we discretize the computational
domain and evaluate the symmetric weak form as the sum of integrals over triangular
patches. Figure 2 shows the discretized domain. Since we only require that the test and
trial functions are C° continuous, we can represent u as a linear function of the nodal
values as shown in Figure 2. Here we assume local linear trial and test functions of the
form

W= gN =123
V= PNy k=1,2.3

Substituting these test and trial function into the second integral of the symmetric
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weak form we get

Q

j=1

N
= Z/ qlen,ip]mNm,idQ
j=179
N
= VK0
=1 '

where KJ

7., the element stiffness matrix, is given by

Kf;m:/ Ny i Npy :d€ (5)
QJ

Corrdinate Transformation and Shape Functions

Before we write the shape functions explicitly, we first define a local linear transformation
under which the coordinates of each element are mapped into the &, n plane. Figure 3
shows graphically what this transformation would look like. To explicitly define this
transformation, we represent x and y as linear functions of ¢ and 7 in the form

r=a+ b+ cn
y=d+e+gn

By evaluating these expressions at all three values of x,y corresponding to values of
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(xyyy)

&p¥) g

xp ) 0,1)

0,0) (1,0)

Figure 3: Transformation from Global to Local Coordinate System

£,m, we get a system of six equations for a,b,¢,d, e, and g.

T =a
xo=a+b
T3 =a-+c
y1=d
Ypp=d+e
ys=d+g

Solving these equations we see the correct local tranformation is

x = 2 + (z2—z1)§ + (z3—x1)n
y =y + (e—wn)é + (ys—y)n

(6)

Also, we may evaluate the Jacobian of the transformation to give us the relationship
between the two coordinate systems as

ox 0x
_| 9 on | _ (g —21) (23 —21) ] _ [ Axy  Axg ]
J= = = 7
dy 9y (2 =) (ys— 1) Ay, Ays (7)
o5 On

where we have introduced the notation (x5 — z1) = Axy for a convenience.

To define the shape functions we note the desired boundary conditions for each shape
function as shown in Table 1. Since the global requirement of continuity on the trial
function is only C° continuity, we may assume a linear form for the local shape function
(N; = ¢t + € + cin). Evaluating the boundary conditions we get a system of nine
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(@1,91) | (z2,y2) | (x3,y3)
Ny 1 0 0
N, 0 1 0
N3 0 0 1

Table 1: Boundary Conditions for Shape Functions

equations with nine unknowns.

Ni(1) = 1 =¢f
N2 = 0 =cf+c}
Ni(3) = 0 =cl+¢}
No(1) = 0 =¢2
Ny(2) = 1 =+
Na(3) = 0 = +c?
Ng(l) = 0 = C?
N3(2) = 0 =&+
Solving this system, we arrive at the shape functions in the element local coordinate
system as
Ny = 1-¢§—1
N, = ¢ (8)
Ny = n

Coordinate System Transformations for Area Integrals

Because of the simplicity of the element local coordinate system, it is desirable to eval-
uate the stiffness matrix integral in this coordinate system. However, since the original
equation is in terms of the standard Cartesian coordinate system, we must properly
rewrite the integral in terms of the local coordinates. To do this, we must properly ex-
press a differential area element in this new system. In Figure 4(a) we see the differential
area element represented in the Cartesian coordinate system. Noting that the area of
the parallelagram formed between two non-parallel vectors can found by the norm of the
cross product of the two vectors, we express the area element dA in terms of the unit
base vectors €;,€, and differential lengths dx, dy as:

dA = ||dx€; x dy €|
= ||&; X &|dx dy
= |les[dx dy
=dxdy

Similarly, for the element local coordinate system we may represent the differential
area element in terms of the covariant base vectors g',g2 and the differential lengths d¢,
dn as:

dA = [|deg' x dn g’
= [lg" x g?[ld¢ dn
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=7
>

ry =1
dx e, deg
(a) Cartesian Coordinate System (b) Element Local Coordinate System

Figure 4: Area Elements in Respective Coordinate Systems

To evaluate the cross product, g' x g2, we first express a vector R in terms of both
coordinate systems as:

R=g'¢(+g’n=ex+tey

By definition the covariant base vectors are:

_ OR  Od@E x+ey) O@E x+ey) _ Ox _ Oy
1_ 9 —a = il
g = € ¢ + ¢ € a§+e2 ¢
., OR Oex+&y) Od@Ex+ey) _ Ox _ Oy
2 _ o e gy
g = o on + o [ o + € an

Now that we have expressed the covariant base vectors in terms of the known cartesian
base vectors we may evaluate the cross product. The result is

ox Oy
96 0 || _Ox 0y Ox Oy
Ox Oy | " o¢ on  on o€
on On

Ig' xg°| =

Recognizing the matrix resulting from the cross product g' x g? as the Jacobian of the
transformation, we have used the (J) to denote that the norm of the cross product is also
the determinant of the Jacobian matrix. Completing the expression for the differential
area element in the element local coordinate system, we have

dA = Jdedn

To summarize, we have shown that in order properly evaluate an are integral in the
element local coordinate system, we should use Equation 9. This equation arose from
reexpressing the differential area in the element local coordinate system in terms of the
original cartesian coordinate system.

J[ sexvasay = [[ remaagay (9)
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Evaluating Local Stiffness Matrices

Now that we have defined the shape functions and a transformation from the global
coordinate system to an element local system, we return to the local stiffness matrices.
Examining Equation 5, and using the Jacobian matrix as in Equaiton 7, we can find the
derivatives of the shape functions as

aNg, | [ 9 Ox ] ONJ, ONY,
I B B N T B
ON;, dy Oy ON;, ON;,
dy o6 onpl L Oy | an
thus
N, N,
a% = a?vfgl S
dy | an
or
ONJ ONJ
a%l =W a(?\éfg
oy on

where j = 1,2,...N is the number of the element and m = 1,2, 3 is the number of the
corresponding element local shape function. Using the matrix notation developed above,
we can now express Equation 5 as

oN; oN;
K= [ | o |08 0%, by (10)
on on

Using Equation 8 we can easily evaluate the local derivatives of the element shape
functions. which are:

Ny Ny
o ! on L
ON, ON,
Z2 o 22
7¢ an 0 (11)
ON; ON;
-2 _ — = 1
o0& 0 on

To obtain expressions for [J]™" and [J]™" we start with the Jacobian as in Equation 7
and perform the standard inversion and transpose for a two by two matrix. This yields

J _ I AXQ AX3
L Ay Ays
J 1 = 1_ AYB _AX3
J | —Ays  Axe
J T — l [ Ays —Ay,
J L —AXg AXQ
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where J is the determinant of the Jacobian given by
J= AXszig - AX3Ay2.

Using these expressions, one can compute the product J~'J~T as

Joag-T 17 Ays —Axg Ay; —Ay,
J2 L _Ay2 AXZ —AX3 AXQ
_ i [ AX% + Ay% _(AXZAXS + AY2Ay3) (12)
2 | —(AxaAxg + AysAyy) A + Ay
P A A

where the notataion Ay = Ax2 + Ay? has been introduced for convenience. The element
stiffness matrix now becomes

ON} ONJ,

. 1 86 )\3 —)\23 65

J = - . .
Km = // 7| oni [423 M } oni ( dedn

an on

Notice that all the quantities involved in the integral are constant for a given element.
Thus, evaluating the integral over a triangular element simply gives us 1/2 times the
constant integrand. Using Equation 11 we see that the components of the element
stiffness matrix as:

J K{.,l = )\2 + )\3 - 2)\25 J K{,Z = )\23 - )\5 J K{,S = )\23 - )\2
J Kg,l = )\23 - )\5 J K;Z = )\5 J Kg«,?; = 7)\23
JK{, = Jds—X JKf, = X3 JKiy = X

with
J= AXQAyg — AXaAYQ

Assembly of the Global Stiffness Matrix and Load Vector

To assemble the global stiffness matrix we must place componenets of the local stiffness
matrices in their appropriate locations in the gobal stiffness matrix. To accomplish
this, we must first have a mapping from the local node numbering to the global node
numbering. For the case of our simple triangular element, this means that for each local
node (il = 1,2,3) we must have a global node number (ig € [1,....N]), where N is the
total number of nodes. Once we have this mapping, all that remains is to cycle through
each element and the local stiffness matrix componenets to the global stiffness matrix
component as follows:

forie=1,2,3
K(ig.jg) = K(ig, jg) + Kiul(ie, je) for je =1,2,3
forj=1,..N
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To assemble the load vector, we first evaluate the integral from Equation 4

N .
/l/dQ:Z// pLNIJdedn k=1,2,3
Q =

=t I{Q1}

Qg;://Nnggdn:éJ

Note that integration of each shape function over a triangular element comes out to be
the same constant for a given element. Now, assembly of a global load vector follow
much the same process as for the stiffness matrix, where the following rule is used:

where

) . P forie =1,2,3
Q(ig) = Q(ig) + Qipea(i€) {forj LN

Solution of the FEM System of Equations

Returning to the Symmetric Weak form of the governing equation, we now may express
the integrals in the global domain in terms of summations of the integrals in the element
local domains. The result is

[pn] [Knm] {am} =[x {@r}

Here we have left of the element index j to signify these as global vectors and matri-
ces. Since the coefficient vector p? is arbitrary, we chose it to be a series of linearly
independent vectors such that we end up with the following system of equations.

(K] {am} = {Qn}

Application of the Boundary Conditions

The boundary condition is a Dirichilet type, specifically ¢ = 0 on the boundary. To apply
this boundary condition to our system of equations, we must simply modify the global
load vector and stiffness matrix to fix the values of ¢ at the boundary nodes. For instance.
Suppose global node n is a boundary node. Set all of the coefficients corresponding to
the equation for node n in the global stiffness matrix equal to zero except for the diagonal
which is set to one. For the load vecotor, we set the nth component also to zero. This
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is shown below, and must be repeated for each boundary node.

i kl,l e kl,n e I{JL]\] ] q1
kn‘l ce kn,n ce kn,N qn =
L kN,l cee kNm cee k‘N,N i qn
I
[ kl,l ce kl,n ce ]fl,N i q1
O ... 1 e 0 q'IL =
L kvt - knn -0 kv ] U aw

We may now solve the modified system of equations for ¢, the nodal values of the

solution variable ¢

{am} = [K,,) QL)

o
Qn
Qw

o

Qw
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2.2.2 Fortran Code provided by Roy Culver
The following is Fortran code for the FEM problem with needed data files.
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2.3 Documents by Paul Nylander (from MAE 207 spring

2006 class)
Local contents
2.3.1 solve Poisson equation using FEM on arbitrary unstructured meshes . . . . 11§
2.3.2 Notes on Analytical solution . . . ... ... ... ... .. ... ... .. 123
233 NotesonFVM . . . .. ... ... 128]
234 FEMnotes. Triangle and quad element . . . . . ... ... ... ....... 1301
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New files send on Nov 27,2006. This ZIP send that contains all the material by Paul
Nylander.

These below are the notebooks individually each converted to PDF
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2.3.1 solve Poisson equation using FEM on arbitrary unstructured
meshes

Project.nb 1

Here is some code to solve Poisson's Equation tisenginite Element Method (FEM) on abritrary unstured meshes:

ImportM esh[folder_] := Module[{}, nodes = Import[StringJoin[folder, " nodestxt"], " CSV"];

elements = Import[StringJoin[folder, " elementstxt"], "CSV"];];

SolvePoissonFEM(] := Module[{), jmax = Length[elements]; xlist = Map[#][1] &, nodes]; ylist = Map[#][2] &, nodes];
{x1, x2} = {Min[xlist], Max[xlist]}; {y1, y2} = {Min[ylist], Max[ylist]}; nxy = Length[nodes]; Q = Table[0, {nxy}];
Klocal = Map[Module[{}, Do[{Ax;, Ay;, void} = nodes[#[i]] — nodesI#[111, {i. 2, 3}1; A2 = Ax5 + Ay3;

A23 = AX2 AXz + Ay, Ay A3 = AX3 + AyZ; d = Axz Ay; — Axs Ay,; DO[QI#INI] +=d/6, {n, 1, 3}1;
1 (A2+23-2023 Az3—A3 -2z
ChOp[E Aoz — A3 A3 -2 []] &, elements]; Kglobal = Table[0, {nxy}, {nxy}1;
A3 =22 —Az3 Az
Do[element = elements]j]; Do[K global[element[m], element[n]] += Klocal[j, m, n], {m, 1, 3}, {n, 1, 3}],
{i, 1, jmax}]; Do[{x, y, boundary} = nodes[i]};
If[boundary == 1, Kglobal[i] = Table[If[j =i, 1, O], {j, 1, nxy}]; Q[iJ = 0],
{i. 1, nxy}1; g = Chop[Linear Solve{K global, QI1];

Interpolatelx_, y_] := Module[{x1, y1}, {x1, y1} = plist[1]; Do[{AX;, Ay;} = plist[i] — {x1, y1}, {i, 2, 3}];

(&, ) = (X = XD {Ayz, —Ay,} + (Y — Y1) {—AX3, AXz}) / (AXz Ays — AXz Ay,); qllelement].{1- & —n, & nil;

PlotSolution[] := Modul€[{}, r = (y2 - y1)/(x2 = x1); ny = 275; nx = Round[ny /r];

image = Tabl€e[0, {ny}, {nx}]; Do[element = elements]j]; xlist = Map[#][1] &, nodes[element]];
ylist = Map[#[2] &, nodes[element]]; plist = Transpose[{xlist, ylist}];
xIntersect[{{x1_, y1_ }, {x2_, y2_}}] := If[yl==y2, oo, X1 + (y —y1) (X2 —x1) /(Y2 — yD)];
Doly =yl1+ (y2-y1) (i —1)/(ny = 1); jlist = Round[(nx — 1)
(Select[M ap[xIntersect, Partition[plist, 2, 1, 1]], (Min[xlist] < # < Max[xlist]) &] — x1) / (x2 — x1) + 1];
If[jlist ='= {}, Do[x = X1 + (x2 — x1) (jj — 1)/ (nx — 1); imageli, jjT = Interpolatex, y],
{ij, Max[1, Min[jlist]], Min[nx, Max[jlist]I}11, {i, Max[1, Round[(ny — 1) (Min[ylist] — y1)/(y2 —y1) + 1]],
Min[ny, Round[(ny — 1) (Max[ylist] - y1)/(y2 - y1) + 1IB}], {j, 1, jmax}];
ListDensityPlot[image, AspectRatio - Automatic, Mesh —» False, Frame - False,
ColorFunction -» (Hue[2 (1 - #) /3] &), AspectRatio - r,
ImageSize - {nx, ny}, Epilog - Table[element = elements]j];
Line[Map[({x, y, boundary} = nodes[#[; {nx (x — x1)/ (x2 = x1), ny (y - y1)/ (y2 - yD}) &,
Append[element, element[1]111, {j, 1, jmax}111;
folder =" C:/School/Engineering/M E207 — Computer M odeling/Project/" ;
folder ="";

Printed by Mathematica for Students
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Project.nb

ImportM esh[StringJoin[folder, " Square/" ]]; SolvePoissonFEM[]; PlotSolution[];

ImportMesh[StringJoin[folder, " Circle/" ]]1; SolvePoissonFEM[]; PlotSolution[];

VAVAVAY - VAVAVAN
X Vi
X

AVAVL | AVAVAV
SAVAVATAY

Printed by Mathematica for Students

119




2.3. Documents by Paul Nylander (from ... CHAPTER 2. SOME COLLECTED...

Project.nb 3

ImportMesh[StringJoin[folder, " Donut/" ]]; SolvePoissonFEM([]; PlotSolution[];

A AVAVAYA .
SR,
_AVAVAVL ﬂ“‘L
AVAVAVAVSTAYA

>
bk S
\

/N SVAY
e vaveY e

A N/ __.-LVA" 1
A TAVAVAVAYAVAS G

oL 7=/

NNISANANNINININNINININING
VA TAVAVAVAVAVANAY:T W
Yava "WA_V_A_YAYAVAV“U'-QV

Q‘VA /\ __‘VAé
AVAVAVAVAVAVAVAVA
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Project.nb 4

ImportMesh[StringJoin[folder, " HexDonut/" ]]; SolvePoissonFEM[]; PlotSolution(];

Printed by Mathematica for Students
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Project.nb 5

ImportMesh[StringJoin[folder, " SquareDonut2/" ]]; SolvePoissonFEM[]; PlotSolution[];
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ImportMesh[StringJoin[folder, " Sunset/" ]]; SolvePoissonFEM[]; PlotSolution[];
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2.3.2 Notes on Analytical solution

Anal ytical Solution.nb 1

Paul Nylander

MAE 207, Methods of Computer Modeling in Engineerirg and the Sciences
Isotropic Rectangular Beam Torsion

beam: http://scienceworld.wolfram.com/physics/Beam. html

= Finite Element Method (FEM) with Triangular Elements

= Roy's notes

Poisson equation : V2 = 529 + 629 =f 5> (VuUV)gp - | (VUVV -fVv)dQ=0
: ox2  5y? oo )
coordinates within triangle : &1, &2
linearized solution : p=oq+0p & +og
node 1: (£1)noder = €11 2 0, (£2)noder = €21 = 0 = G1 = Proden = 01 + 02 E11 + 03 €21 2 04
node 2 (E1) nodez = €12 2 1, (€2) nodez = €22 20 = U2 = Pnodez = 0 + 02 E12 + a3 E22 2 0q + a2
2?2

? 2?2

node 3: (1) nodes = €13 = 0, (E2) nodes = €23 =1 > 03 = Pnodes = a1 + 02 E13 + 03 E23 = 01 + 03
2

U=01 Nt +dq2 N + gz Ns = 9

oN. N, ONg S+ 05«
OxX 53 [e% * *
VN7-VN<:[0 : GM} 0% x 0%
ay oy oy 0% % O%*
whatis N?

= class notes: 5/1/06

Solve [{0=bxl +cx2 +dx3,1 ==bxl +cx2 +dx3,0 =bxl+cx2 +dx3}, {x1, x2,x3 }]

= Analytical Solution, Nasser's notes

Pandlet
. do T
2. . La 1
[v2$ = -2 GK, angle at twist : a ©3
3268 v 1 n1 Cosh [b]
(o, 1) — (= _
¢ 73 Z n3 (-1)= {1 Cosh [b]
nodd
Figl
twist rate : g—g = k z, rectangular beam dimensions: a x b, appliedtorque: T
s _ T E . .
modulus of rigidity : G Bl e , Young' s modulus: E,
Poisson' sratio: v, shearing stress : t, shearing strain: Y

Printed by Mathematica for Students
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Anal ytical Solution.nb 2
. , 16 _3 19%a < 1 nxb,|
torsion constant : J =3 a b |1- b5 Z o5 Tanh | 7 || = 218498
n=1,35 ..
o ) o 2 82s 623
Prandtl stress function : &, Poisson equation : VED = >z " oyz = -2GK, @poundary =0
. 32Gka S 1 ot Cosh [ /Y | nx
. _ = _ v _ a
Timoshenko: @ = == == o7 (-1) (1 Cosh (b Cos| > B
a
n=135 ..
. . T
linear twist : k )
o 0% o3
shear stress tensor field : tyz =~ 5y ba = By Tyx =0, ox =0y =0, =0
Oxx Txy Txz
principle stresses : {o1, 02, o3} = Eigenvalues [ |ty oy Ty ||
Tzx Tzy Ozz

: . 2 2 2 2 2 (172
Von Mises stress : oy = \/((01 -02)°+ (02-03)°+ (03-01)7) /2 = (3 (Tiz + Ty ) )
strain tensor field (material constitutive relation )

1 1 1
ex=F (ox-v (0y+02)) =0, ey = & (0y -V (ox+02)) =0, €2 = g (0z -V (0x+0y)) =0

T T
Ixy = é =0, Yyz = sz Yxz tg
angle of twist : a=kz

T
a=b=2T =G=1;J =2.1849801331564294"; k = —;

GJ'
32Gka 1 na Cosh[ZZL] nx
&= ——— Sum[ — (-1) 2 - Cos|[ ], in,1,10,2 }]; Ty = -048 T =0y,
73 n3 Cosh["sz] 2a
a

DensityPlot [txz, {X, -a/2,a /2}, {y, -a/2,a /2},
PlotPoints - 100, Mesh - False, FrameLabel - {"X","y" }1;

0.5

-05
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Anal ytical Solution.nb 3

(« http:  //www.efunda.com /formulae /solid_mechanics /mat_mechanics /strain.cfm *)
ow oV - ou  ow _ov  ou
3y 5z ' Yxz = y Uxy = X 3y

x=y=0 (;— ((a);z)z"(biz)z])

1/2

Plot [g(1-9), {9,0,1 }1;
0.25

0.2
0.15
0.1

0.05

0.2 0.4 0.6 0.8 1
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Anal ytical Solution.nb 4

PlotColor [hue_1]: =
RGBColor eeIf [hue =1, {1,0,0 }, Module [{x = Mod[4 hue, 1 1}, Switch [Mod[Floor [4 hue], 4 ],
0, {0,x,1 31, {0,1,1 -x},2, {x,1,0 3,3, {1,1 -x,013}111;
a=20;b =20;L =100;G =1;dx =a/8;dy =b/8;dz =L /40;J =2.1849801331564294";

T
Clear [Xx,y,2, T ik = —;
[x,y 1 G
32Gka
= —mM8M —

1 n- Cosh[n 2a X
sum = (-1)% (1- nzy/( )]] [ ] 1,102 3];
73 n3 Cosh[nnb/ (2a)] 2a
T T
Tyz = =Ox &, Txz =0y 8, ¥Wyz = %; ¥xz = g )

Rotate [{X_,Y_,z_ }, 6_1:={xCos[®6] -ySin [6], xSin [e] +yCos[e], z };
animation = {};scale2 =10.0; Tmax = scale2;dt =1.0 /360;
Prepare [T1_,z1_ ]:= Module [{}, a=kzl /scale2 /. T -»T1,;
X2 4 y2 1/2
scale = ] /. {x=>a/2y -)b/2}];
(X+wxz /2)%+ (Y +wy2 /2)?
Calculate [T1_, {x1_,yl_,z1_ }]:=
{Rotate [{scale (x +¥x /2),scale (y+v¥y,/2),2z1 +scale (X¥x +Y¥y)/2}, a-
1 +0.09576080145730925" T 7 1/2
< ]__]1 (3 (t§z+t§z))
1 -0.09332536922126035" T 4
Do[slices = {}; Show [Graphics3D [{EdgeForm[], Table [T =Tmax (1-Cos[2xt]) /2;
Prepare [T, z ];slicel = slice2; slice2 = Map[Calculate [T, {#[11,# [21,2Z }] &
Flatten [{Table [{x, -b/2}, {x, -a/2,a /2 -dx,dx }], Table [{a/2,¥y },
{y, -b/2,b /2-dy,dy }], Table [{x,b /2}, {x,a /2,dx -a/2, -dx}], Table [
{-a/2,y}, {y,b /2,dy -b/2, -dy}1},11]];slices = Append [slices, slice2 1;
n = Length [slice2 71;If [z =0, Polygon [Map[#[1] &, slice2 1], Table [
quad = {slicel T[[i]1],slice2 [[i]],slice2 [[Mod[in ]+1]],slicel [[Mod[iin ]+1]11};
{SurfaceColor [PlotColor [ (Plus ee Map[#[2] & quad ] /4) /4.632030522701348 11,
Polygon [Map[#[1] & quad 11}, {i,1,n }11, {2, 0,L,dz 3}1},
ViewPoint - {-1,1, 1 3}, ViewVertical - {0,1,0 }, Axes - True,
AxesLabel - {"x", "y", "z" },
PlotRange - {{-a,a }, {-b,b}, {O,L }}11;
animation = Append [animation, slices 1,
{t,
0,
0.5,
dt 11;

ArcTan [

b/ ixoxly -yl T »Tiy;
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Anal ytical Solution.nb 5

Zero [X_, n_ ]:=Module [{str =ToString [x]},
StringJoin @@ Append [Table ["0", {n - StringLength  [str ]1}],str 11;
POVFormat [x_Real ] : = ToString [X, CForm ]; POVFormat [x_Integer ] :=ToString [X];
POVFormat[{{X_,Y_,Zz_ }, o_}]:=StringJoin ["<", POVFormat [X],
""", POVFormat [y],")", POVFormat [z],"", POVFormat [o]," >"1;
POVFormat [xlist_List ] : = StringJdoin  [" {", StringJoin ee

Map[POVFormat [#] <>"," & Drop  [xlist, -1]1]1, POVFormat [Last [xlist 11," }"1;
TakeLoop [list_, n_ ] :=Take [Join [list, list 1, n 1;nslice  =Length [animation [111];
WriteVar [name_, x_ ] : = WriteString [wf, StringJoin ["#declare ", name, " =array [",

ToString [Length [x]11," 1[", ToString [Length [x[1]]1]," 1 ", POVFormat [x],"\n" 11;
Do[T =Tmax (1 - Cos[2xt]) /2;frame =Round[t /dt +1]; slices = animation [frame J; wf =

OpenWrite [StringJoin  ["C: /Files /PovRay/Physics /Torsion /", Zero [frame, 3 1, "inc" 11;
Do[WriteVar [StringJoin  ["wall", ToString [iwall 11,
Table [TakeLoop [slices [islice 1,8 ({iwall -1,iwall } +1], {islice, 1, nslice 311,

{iwall, 1, 4 }1; Prepare [T, 0 ]; WriteVar ["capl",
Table [Calculate [T, {X,y,0 }1, {y, -b/2,b /2,dy }, {X, -a/2,a /2,dx }1];
Prepare [T, L ]; WriteVar ["cap2", Table [Calculate [T, {X,y,L }1,
{y, -b/2,b 72,dy }, {x, -a/2,a /2,dx }II;
Close [wf], {t O, 0.5, dt 11

CopyScaleExport  ["C: /Files /Animated Gifs /Torsion", 140, " =.bmp" 1;
CopyScaleExport  ["C: /Files /Animated Gifs /Torsion", 70, " *.bmp" 1;

Export ["C: /Files /Animated Gifs /Torsion /Torsion.gif", Map [Import [#[1]] &, Partition [
FileNames [" x.bmp", "C: /Files /Animated Gifs /Torsion" 1, 1,1 ]], ConversionOptions -
{"AnimationDisplayTime" - 0, "Loop" - True, "GlobalColorReduction" - True }1;
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2.3.3 Notes on FVM

FVM nb 1

Finite Volume M ethod (FVM)

m Notes

N:=a+bg+cn+dén+e&+fn>+g&&n+héen+i €n%

O X a,,X)

X:i=X1+ (X2-%x1) €+ (Xx3-x1)n; y:=yl+ (y2-yl) £+ (y3-yl)yn; J =[
Osy Ony

[¢]
Inversef[J]. (afx) // MatrixForm// Full Sinplify

n
Cear [N]; N[, n_l:=a+b&+cn+den+e&+fn?+g&&n+hen+i €n?%
dNdx[&_, n_1:=

(-yl+y3) (b+n(d+hn)+2(€+n(g+in)) & + (xL-x3) (C+2fn+&(d+g&+2n (h+i §)))
X3 (Yl -y2) +x1 (y2-y3) +x2 (-yl +y3) '

dNdy [€_, n_]:=
(yl-y2) (b+n(d+hn)+2(e+n(g+imn)) &) + (-xL+x2) (c+2fn+&(d+g&+2n (h+i §)))
X3 (Yl -y2) +x1 (y2-y3) +x2 (-yl +y3) '

Sol ve[{N[0, 0] =q, dNdx[0, O] ==q4, dNdy[O, O] ==qg7, N[1, O] =g, dNdx[1, O] =gs,
dNdy [1, O] =qs, N[O, 1] ==qs, dNdx [0, 1] =qs, dNdy[O, 1] =qo}, {a, b, c, d, e, f, g, h, i}]

{}

N=a+b&+cn+dén+e&?+fn2+g&n+hen?+i &n?
=01

(-x1 +Xx2) gg4 + (-x1 +x3) g7
(-yl+y2) da+ (-yl+y3)ar

=d

=-01+02+ (X1 -x2)0gsa+ (x1-x3)Qqr
=-O1+03+ (Y1-y2) as+ (yl-y3)ar

dy —=
x1 - x3
(-2 (yl-y3)qi1+2 (yl1-y3)Qgz- (x2y1 +x3yl-x3y2-x2y3+x1 (-2y1+y2+y3))qa+
(x3yl+x1y2-x3y2-x1y3+x2 (-yl+y3))Qs) +2 (yl-y3)qr

h=-d+

- 0D O 0O T Q®
1

(=]
I

1
W(—2 (X1 -x3) 01 +2 (x1-x3)Qqsz -
(X2y1l +x3yl-x3y2-x2y3+x1 (-2yl+y2+y3)) Qs+
(-x3yl-x1y2+x3y2+x2 (yl-y3) +x1y3)gs) +2 (x1-x3)qr

pg. 805

shapefunctions: N; =83=1-€-n, N\p=81=§ Ng=82=1n
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FVM nb

U:=al+bg2+ce3+dele2+eg2e3+f 381+
g (81282+2818283 (3 (1-u3) 81- (1+31u3) 82+ (1+313) £3) /2) +
h(e22e3+2122¢€3 (3 (1-ul)€2- (1+3pul) 3+ (1+3ul)gl)/2)+
i (£3%21+218283 (3 (1-p2) 83~ (1+3p2) g1+ (1+3u2) £2) /2);
ul = (¢Lk? -2y /42

see Pat ankar, 1985
Mal agasekar a

= http://www.amazon.com/gp/offer-listing/0582218845/sr =8-1/qid=1157653744/ref=sr_1_1/002-2175139-6
340059?ie=UTF8& s=books
zdhan@car e.eng.uci.edu

Printed by Mathematica for Students

129




2.3. Documents by Paul Nylander (from ... CHAPTER 2. SOME COLLECTED....

2.3.4 FEM notes. Triangle and quad element

FEM.nb

= Notes: http://bessie.che.uc.edu/tlb/teach/under grad/chem381f97/math/node7.html

1 1 T 651’
soln:f f e, 0,037 (7 )i acan
o Jo Oyv

. ) . 1 1 (95 Nn
local stiffnessmatrix : Ki, :f f {06 Nim, 6,7Nm}ITI1(a N )||J||d§dn
0 Jo n'Nn

= Triangle Element

shapefunctions: Ny =1-¢6-n,No=¢,Ng=p
ov

. . 3 3 ou au ov
trial and test function: U:Zqi Ni, v:;pk Nk - 8_6 =—01+ O, 9% =—p1+ P2 5_71 =—01 + O3, 5_'7 =—pP1+Ps

i=1
X=X+ R =X E+ R =X N> X=X+ K2 = X)) E+ K3 =X) 7, Y=Y1+ Y2 - YD) €+ (Y3 -y 7
AXp =Xp — X1, AY, = Y2 — Y1, AXg = X3 — X1, Ayz3 =Y3 - Y1

Jecobian: J (afx ’9"’(] (AX2 e ] (i, dy) = J{d, di)
I L d= . = , 10X, = ,
dey ay) " \ay, Ay, o
eigenvalues: Ay = AX3 + Ay3, Aoz = AXp AXa + Ay, Ays, Az = AXS + Ay2
1 [7(2+7t3—2123 A3 =243 Az -2z
A S Aoz — Az A3 —A23
mn _
AXy Ay, — AXz Ay, s — Ao s 12

= Quad Element

shapefunctions: Ny = -1 (E-1),N2=éA-m),Na=n(1-&),Na=¢n
X=X1+R2-X)E+ K3 —X)n+ Ry —X2—R3 +Xa) §n
AXp =X = X1, AY, = Y2 — Y1, AXg = X3 — X1, AY3 = Y3 - Y1, AXa = X1 = X2 =Xz + Xg, AYa = Y1 - Y2~ Y3+ Va

X OpX AXp + 1 AXa AXz + & AX,
Jacobian:J:[(f g ]:( 2+1lXy Axg+é a)

Ocy O,y Ay, + 174y, Ayz+EAY,
eigenvalues: A, = AX3 + Ay3, A3 = AXp AXg + Ay, Ays, A3 = AXS + Ay2
Kgnn:X
= Program

Calculatethex, y coordinatesof thenodes:
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FEM.nb

a=b=20,nx=7;ny=5;
nodes = Chop[Flatten[Table[{x, y}, {y, =b/2, b/2, b/(ny - D}, {x, —a/2, a/2, a/(nx — 1)}], 1]]

{{-1., -1}, {-0.666667, —1.}, {—0.333333, -1.}, {0, —1.}, {0.333333, -1}, {0.666667, —1.}, {1., —1.},
{-1., -0.5}, {-0.666667, —0.5}, {—0.333333, —0.5}, {0, —0.5}, {0.333333, —0.5}, {0.666667, —0.5},
{1., -0.5}, {-1., 0}, {-0.666667, 0}, {—0.333333, 0}, {0, 0}, {0.333333, 0}, {0.666667, 0}, {1., O},
{-1., 0.5}, {—0.666667, 0.5}, {—0.333333, 0.5}, {0, 0.5}, {0.333333, 0.5}, {0.666667, 0.5}, {1., 0.5},
{-1., 1.}, {-0.666667, 1.}, {—0.333333, 1.}, {0, 1.}, {0.333333, 1.}, {0.666667, 1.}, {1., 1.}}

Calculatetheindicesof nodesof thetriangleelements:

elements= Flatten[Table[{{i, i+ 1, i+nx}, {i+ 1, i+nx+ 1, i+nx}}+(-Dnx {j, 1, ny-1}, {i, 1, nx =1}, 2]

{{1, 2,8}, {2,9, 8}, {2, 3,9}, {3, 10, 9}, {3, 4, 10}, {4, 11, 10}, {4, 5, 11}, {5, 12, 11}, {5, 6, 12}, {6, 13, 12}, {6, 7, 13},
{7, 14, 13}, {8, 9, 15}, {9, 16, 15}, {9, 10, 16}, {10, 17, 16}, {10, 11, 17}, {11, 18, 17}, {11, 12, 18}, {12, 19, 18}, {12, 13, 19},
{13, 20, 19}, {13, 14, 20}, {14, 21, 20}, {15, 16, 22}, {16, 23, 22}, {16, 17, 23}, {17, 24, 23}, {17, 18, 24}, {18, 25, 24},
{18, 19, 25}, {19, 26, 25}, {19, 20, 26}, {20, 27, 26}, {20, 21, 27}, {21, 28, 27}, {22, 23, 29}, {23, 30, 29}, {23, 24, 30},
{24, 31, 30}, {24, 25, 31}, {25, 32, 31}, {25, 26, 32}, {26, 33, 32}, {26, 27, 33}, {27, 34, 33}, {27, 28, 34}, {28, 35, 34}}

Hereisapictureto visualizethetriangle elements:

jmax = Length[elements]; $DefaultFont = {" Times—Roman", 9};
PlotColor[hue_] := Hue[2(1 — Min[1, Max[0, huel])/ 3];
Show[Graphicq Table[plist = Map[nodes[#] &, elements[j]]; {PlotColor[(j — 1)/ (jmax — 1)], Polygon[plist],
RGBColor[0, 0, 0], Text[j, Plus@e plist/ 3], Table[Text[elementd]j, i, plistliIl, i, 1, 3}1}, {j, 1, jmax, 1}11,
AspectRatio -» Automatic, PlotRange - {{-1, 1}a/2, {-1, 1} b/2}];

Calculatethelocal stiffnessmatrices:
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FEM.nb

my calculations(doesthisagreewithRoy?) : A5 = AX3 + Ay3, Aoz = AXp Ay, + Axg Ayg, A3 = AXS + Ay3, A = AX3 — Ay3
1

Kioeg = —————r
toca AXp Ay; — AXz Ay,

(AXz — AY,)? + (Axag — Ay3)?  AXp Ay, — Ay2 + AXg Ays — Ay2  —AXS — AXS + AXp Ay, + AXz Ay,

AXp Ay, — Ay3 + Axz Ay — Ay3 Ay3 + Ay3 —AXy Ay, — AXz Ay,
—AX3 — AX + AXp Ay, + Axz Ay, —AXp Ay, — Ax3 Ay, AX3 + AX3
1 )L2+A3—2A23 A23—A3+Aa l23—)L2—)La
= | A3—A3+4A;, Az —Aq —A23
AXp Ay, — AX3 Ay
3 2l ds-22-2a —Az3 A2+ Aq

Klocal =
Map[Modul€[{}, Do[{Ax;, Ay;} = nodes[#[i]] — nodes[#[111, {i, 2, 3}]; A2 = AX3 + Ay3; Ao = AXp AXg + Ay, Ays;

A2+A3=2223 Az—A3 A3—A;
A3 = AX3 + Ay3; d = Axp Ay; — AXz Ay,; Chop[a- Aoz — A3 A3 -2z |]] &, elements];
A=Az =22 Az
Map[
MatrixForm,
Klocal]
2.16667 -15 -0.666667 0.666667 —0.666667 O 2.16667 -15 -0.666667
-15 15 0 ], { -0.666667 2.16667 -1.5 ], { -15 15 0 ],
-0.666667 O 0.666667 0 -15 15 -0.666667 O 0.666667
0.666667 —0.666667 O 2.16667 -15 -0.666667 0.666667 —0.666667 O
-0.666667 2.16667 —1.5 |, -15 15 0 .| —0.666667 2.16667 -1.5|,
0 -15 15 -0.666667 O 0.666667 0 -15 15
2.16667 -15 -0.666667 0.666667 —0.666667 O 2.16667 -1.5 -0.666667
-15 15 0 ,| —0.666667 2.16667 -1.5|, -15 15 0 ,
-0.666667 O 0.666667 0 -15 1.5 -0.666667 O 0.666667
0.666667 —0.666667 O 2.16667 -15 -0.666667 0.666667 —0.666667 O
-0.666667 2.16667 —1.5 |, -15 15 0 .| —0.666667 2.16667 -1.5|,
0 -15 15 -0.666667 O 0.666667 0 -15 15
2.16667 -15 -0.666667 0.666667 —0.666667 O 2.16667 -1.5 -0.666667
-15 15 0 ,| —0.666667 2.16667 -1.5 |, -15 1.5 0 ,
-0.666667 O 0.666667 0 -15 15 -0.666667 O 0.666667
0.666667 —0.666667 O 2.16667 -15 -0.666667 0.666667 —0.666667 O
-0.666667 2.16667 —1.5 |, -15 15 0 .| —0.666667 2.16667 -1.5|,
0 -15 15 -0.666667 O 0.666667 0 -15 15
2.16667 -15 -0.666667 0.666667 —0.666667 O 2.16667 -1.5 -0.666667
-15 15 0 ,| —0.666667 2.16667 -1.5|, -15 1.5 0 ,
-0.666667 O 0.666667 0 -15 15 -0.666667 O 0.666667
0.666667 —0.666667 O 2.16667 -15 -0.666667 0.666667 —0.666667 O
-0.666667 2.16667 —1.5 |, -15 15 0 .| —0.666667 2.16667 -1.5|,
0 -15 15 -0.666667 O 0.666667 0 -15 15
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FEM.nb 4
2.16667 -1.5 -0.666667 0.666667 —0.666667 O 2.16667 -1.5 -0.666667
-15 15 0 ,| —0.666667 2.16667 -1.5 |, -15 15 0 ,
-0.666667 0  0.666667 0 -15 15 -0.666667 0  0.666667
0.666667 —0.666667 O 2.16667 -1.5 -0.666667 0.666667 —0.666667 O
-0.666667 2.16667 -1.5|, -15 15 0 ,| —0.666667 2.16667 —1.5 |,
0 -15 15 -0.666667 0  0.666667 0 -15 15
2.16667 -1.5 -0.666667 0.666667 —0.666667 O 2.16667 -1.5 -0.666667
-15 15 0 ,| —0.666667 2.16667 -1.5 |, -15 15 0 ,
-0.666667 0  0.666667 0 -15 15 -0.666667 0  0.666667
0.666667 —0.666667 O 2.16667 -1.5 -0.666667 0.666667 —0.666667 O
-0.666667 2.16667 -1.5 |, -15 15 0 ,| —0.666667 2.16667 —1.5 |,
0 -15 15 -0.666667 0  0.666667 0 -15 15
2.16667 -1.5 -0.666667 0.666667 —0.666667 O 2.16667 -1.5 -0.666667
-15 15 0 ,| —0.666667 2.16667 -1.5 |, -15 15 0 ,
-0.666667 0  0.666667 0 -15 15 -0.666667 0  0.666667
0.666667 —0.666667 O 2.16667 -1.5 -0.666667 0.666667 —0.666667 O
-0.666667 2.16667 -1.5|, -15 15 0 ,| —0.666667 2.16667 —1.5 |,
0 -15 15 -0.666667 0  0.666667 0 -15 15
2.16667 -1.5 -0.666667 0.666667 —0.666667 O 2.16667 -1.5 -0.666667
-15 15 0 ,| —0.666667 2.16667 -1.5 |, -15 15 0 ,
-0.666667 0  0.666667 0 -15 15 -0.666667 0  0.666667
0.666667 —0.666667 O 2.16667 -1.5 -0.666667 0.666667 —0.666667 O
-0.666667 216667 -1.5|, -15 15 0 ,| —0.666667 2.16667 -1.5
0 -15 15 -0.666667 0  0.666667 0 -15 15

Assembleglobal stiffnessmatrix :
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2.16667
-15

—0.666667

0

O O 0O 0000000000000 O0OO0OO0OO0OO0OOoOOoOOoOOoOOo

O OO0 0O O0OO0OO0O00O0O0O00O00O0O0O0O0OO0OO0OO0OOoOOoOOoOOo

0

-15
4.33333
-15

0

0
0
0
0

-1.33333

O O OO0 OO0 O0O0O0000O00OO0OO0OO0OO0OO0OO0OOOOoOOoOOoOOo

nxy = Length[nodes]; Kglobal = Table[0, {nxy}, {nxy}];
Do[element = elements]jT;

Do[K global[element[m], element[n]] += Klocal[j, m, n], {m, 1, 3}, {n, 1, 3}, {j, 1, jmax}];
Kglobal // MatrixForm

0 0 0 0 —-0.666667 0
0 0 0 0 0 —-1.33333
-15 0 0 0 0 0
4.33333 -15 0 0 0 0
-15 4.33333 -15 0 0 0
0 -15 4.33333 -15 0 0
0 0 -15 2.16667 0 0
0 0 0 0 4.33333 -3.
0 0 0 0 -3. 8.66667
0 0 0 0 0 -3.
-1.33333 0 0 0 0 0
0 —-1.33333 0 0 0 0
0 0 -1.33333 0 0 0
0 0 0 —0.666667 0 0
0 0 0 0 —-0.666667 0
0 0 0 0 0 —-1.33333
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

o O o

|
P
w

N

O O o o
I.\OOOOO

OOOOOOOOOOOOOOOOO;‘ROOOOOJ.\

O OO0 0O O0OO0O0O00OO0O0OO0 OO0 OoOOoOOoOOo

.

®
o)
=]
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FEM.nb 6

= Honey Comb

nx = 50; ny = Round[2nx Tan[x/6]]; dx = 1.0/ (nX — 2);
nodes = Flatten[Table[Table[{Min[1, Max[-1, x]], dx (j — 0.5(ny + 1)) / Tan[x / 6]},
{X, =(L+dxMod[j, 2], 1+ dx, 2dx}], {j, 1, ny}], 11;
elements = Flatten[Table[Table[i + (j — 1) nx — Floor[j /2] + Join[If[Mod[j, 2] == 1]|i > 1, {{O, 1, nx}}, {}1,
If[Mod[j, 21 ==01]i < nx =1, {{1, nx + 1, nx}}, {11, {i, 1, nx = 1}], {j, 1, ny = 1}], 2];
jmax = Length[elements]; PlotColor[hue ] := Hue[2 (1 — Min[1, Max[O, huel])/ 3];

$DefaultFont = {" Times—Roman", 9};
Show[Graphicq Table[plist = Map[nodes[#] &, elements[jI1;
{PlotCoalor[(j — 1)/ (jmax — 1)], Polygon[plist], RGBColor[0, O, 0], Text[j, Pluse@e@ plist/ 3],
Table[Text[elementd]], iT, plistliTl, {i, 1, 3}1}, {j, 1, jmax, 1}]], AspectRatio -» Automatic, PlotRange - All];
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Klocal =
Map[Modul€[{}, Do[{Ax;, Ay;} = nodes[#Ii]] — nodes[#[111, i, 2, 3)]; A2 = AX3 + Ay3; Aoz = Axp AXg + Ay, Ays;
1 (l2+A3=223 An—A3 Am—2A;
A3 = AxZ + Ay2; d = Axp Ay, — AXz Ay,; Chop[E A2z — A3 A3 -1z |]] &, elements];
Az — A2 -2z Az
nxy = Length[nodes]; Kglobal = Table[0, {nxy}, {nxy}];
Do[element = elements]j]; Do[K global[element[m], element[n]] += Klocal[j, m, n], {m, 1, 3}, {n, 1, 3}1, {j, 1, jmax}];
Q = Table[0, {nxy}]; Map[Module[{}, Do[{AX;, Ay;} = nodes[#[i]] — nodes[#[111, {i, 2, 3}1;
Do[QI#[n]] += (Ax2 Ay; — AX3AyY,) /6, {n, 1, 3}]] &, elements];
ymax = Max[M ap[#[2] &, nodes]];
Do[{x, y} = nodes[iT;
If[Abg[x] == 1 || Abs]y] == ymax, Kglobal[i] = TableIf[j ==, 1, O], {j, 1, nxy}]; Q[il = 0I, {i, 1, nxy}];
g = Linear Solve[K global, QJ; g1 = Min[q]; g2 = Max[q];
Show[Graphicq{PointSize[1.5dx], Table[{PlotColor[(q[i] — ql)/ (g2 — q1)], Point[nodes[iT1}, {i, 1, nxy}1},
AspectRatio —» Automatic, Background - RGBColor|[0, 0, 0]]];

Printed by Mathematica for Students
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FEM.nb 8

(x Interpolated plot, runtime: 2.3 minutes x)
Interpolatelx_, y_]:=
Modulef{j =1,¢6=2, =0}, While[! 0<¢<1&& 0=n=<1&& £ +n < 1), element = elements]jI;
{x1, y1} = nodes[element[1]]; Do[{AX;, Ay;} = nodes[element[i]] — {x1, y1}, {i, 2, 3}I; d = Axp Ay; — AX3 Ay,;
&, 1) = (X = XD {Ayg, —AY,} + (Y = YD) {=Ax3, AX2}) /d; j++]; qlelement] {1 - £ — 75, £ n}l;
ymax = 0.5dx (ny — 1)/ Tan[x/ 6];
DensityPlot[I nterpolatelx, yl, {X, =1, 1}, {y, —ymax, 0.999 ymax},
PlotPoints » 275, Mesh - False, Frame —» False, Color Function » PlotColor];

= Unstructured Grid

nodes =
Transpose[| mport[" C:/School/Engineering/M E207 — Computer M odeling/Unstructured Grid/mesh_p.txt", " Table"]];
elements = Transposeg{Round[Delete]
Import[" C:/School/Engineering/M E207 — Computer M odeling/Unstructured Grid/mesh_t.txt", " Table"], 4]11;
jmax = Length[elements]; xlist = Map[#[1] &, nodes]; ylist = Map[#][2] &, nodes];
{x1, x2} = {Min[xlist], Max[xlist]}; {y1, y2} = {Min[ylist], Max[ylist]};
nxy = Length[nodes]; Q = Table[0, {nxy}1;
Klocal = Map[Modul€[{}, Do[{Ax;, Ay;} = nodes[#[i]] — nodes[#I111, {i, 2, 3}]; A2 = Ax3 + Ay3;
A2z = Axp AX3z + Ay, Ayz: A3 = AX3 + AyZ; d = Axp Ay, — Axz Ay,; DO[QI#INIT +=d/6, {n, 1, 3}1;
A2+A3=2223 A —A3 An-—-A2
Chop[—| Az-2s A3 -2z |]] &, elements]; nxy = Length[nodes];
Az — Az -2 A2
Kglobal = Table[0, {nxy}, {nxy}];
Do[element = elements]jI;
Do[K global[element[m], element[n]] += Klocal[j, m, n], {m, 1, 3}, {n, 1, 3}, {j, 1, jmax}];
Do[{x, y} = nodes[i]; If[x == x1||x == x2 ||y == y1||y == y2, Kglobal[i] = Table[If[j ==1i, 1, 0], {j, 1, nxy}]; Q[T = 0],
{i, 1, nxy}]; g = Chopl[Linear Solve[K global, Q]];

Printed by Mathematica for Students
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FEM.nb

(* 17 minutes %)
Interpolatelx_, y_]:=
Modulef{j =1,¢6=2,7=0,x1, y1}, While[! 0<¢ <1&& 0=n=<1&& £ +n < 1), element = elements[jI;
{x1, y1} = nodes[element[1]]; Do[{AX;, Ay;} = nodes[element[i]] — {X1, y1}, {i, 2, 3}I; d = Axp Ay; — AX3 Ay,;
&, 1) = (X = XD {Ayg, —AY,} + (Y = YD) {=Ax3, AX2})/d; j++]; qlelement] {1 - £ — 7, £ n}l;
DensityPlot[I nterpolatelx, v, {X, X1, x2}, {y, y1, y2}, PlotPoints » 275, AspectRatio - Automatic,
Mesh - False, Frame — False, Color Function -» (Hue[2(1-#)/3] &),
Epilog —» Table[{Line[lM ap[nodes[#] &, elements[jT11}, {j, 1, jmax}1];

Printed by Mathematica for Students
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FEM.nb

10

n = 275; image = Tabl€e[0, {n}, {n}];
Interpolatefx_, y_]:= Module[{x1, y1}, {x1, y1} = plist[1]; Do[{AX;, Ay;} = plist[i] — {x1, y1}, {i, 2, 3}1;
(&, 1} = (X = XD {Ays, —AY,} + (Y — Y1) {—AX3, AX2}) [ (AXz Ays — AX3 Ay,); dlelement].{1 - & -7, & n}];
Do[element = elements]j]; plist = nodes[element]; xlist = Map[#[1] &, plist]; ylist = Map[#[2] &, plist];
xIntersect[{{x1_, y1 }, {x2_,y2 }}] :=x1+If[yl==y2,0, (y -y (x2-x1)/(y2-yD)];
Doly =yl+(y2-yD(@(—-1/(n-1);jlist =
Floor[n (Select[M ap[xI ntersect, Partition[plist, 2, 1, 1]], (Min[xlist] = # < Max[xlist]) &] — x1) /(X2 = x1)] + 1;
If[jlist =!= {}, Do[x = X1 + (x2 — x1) (jj — 1)/ (n = 1);
image[Max[1, Min[n, i]], Max[1, Min[n, jj11T = Interpolatex, y], {jj, Min[jlist], Max[jlist]}1],
{i, Floor[n (Min[ylist] = y1) /(y2 = yD] + 1, Floor[n (Max[ylist] = y1)/(y2 = yD] + 1}], {j, 1, jmax}];
ListDensityPlot[image, AspectRatio - Automatic, Mesh —» False, Frame —» False, Color Function -» (Hue[2(1 - #)/3] &).
Epilog —» Table[{Line[Map[n (nodes[#] + 1) /2 &, elements[jT11}, {j, 1, jmax}]l;

Printed by Mathematica for Students
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clearpage

2.4 Documents by Wei Gao (from MAE 207 Fall 2006
class)

Notes on Torsion problem for cross section. Send to class mailing list on Nov 27,2006.
Torsion and FEM.

Torsion of Rectangular Bars

Vip=-2Ga
—al2

#.-0

—b/2 b/2
Series Solution:
b 8Gab® & (-1)"  cosh X )

al2 e R [T cosh(ralz) oY
X

where 4 =(2n +1)%

Finite Element Program

MATLAB program which solves the 2D Poisson equation
with Dirichlet boundary conditions:

Vi+ f(x,y)=0

4. =0

http://www.csit.fsu.edu/~burkardt/m_src/fem2d_poisson/fem2d_poisson.html

Notice: There is a minor error in “nodes_plot.m”
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How to use this program?

“rhs.m”: modify the function f(x,y)

“exact.m”: input exact solution if it exists

Run “fem2d_poisson.m” , get the results!

‘ input coordinates of notes and G, « ‘

v

‘calculate matrix K,,Q, in element ‘ do cycle

for N elements

‘assemble K., Q. to global matrix K,Q ‘

v

‘ use boundary condition ‘

‘ solve KX=Q to get the value of stress function ‘

|

‘ integrate stress function to get torsion constant ‘
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Quadrate Triangle Element

7,

3(0,1)
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a =0.001
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Error

Error of the value of stress function

¢series - ¢fem

error =————

series

EE - ‘ 136 131 138
(g s 120 123 J4 |
B
05 10s 107 £ 1 L0 diL b
. .
@ 03 M 5 % 9 B8 w0
® 80 3
.

Larger error in corner nodes?
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Torsion Constant

D" =1.4058e + 007
D" = 1.3828¢ +007

error =1.64%

Notice: we do the integration in rectangular element, but it is
better to do it in triangular element.
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