

HW 4. CEE 247. Structural Dynamics. UCI. Fall 2006.

Nasser Abbasi

November 12, 2006

Contents

- 1 Problem
- 2 Solution

2

2

1 Problem

Determine and plot the deformation response u(t) from a SDOF system with natural period of $2 \sec$ and $\zeta = 5\%$ to the El Centro ground motion N-S component. Implement one of the numerical time-stepping algorithms.

2 Solution

Derivation used was based on TextBook 'Structural Dynamics' 5th edition by Paz and Leigh. Page 185.

First, The El Centro data needed was downloaded from this web site

http://nisee.berkeley.edu/data/

Here is listing of the first few lines of the file:

Data for El Centro 1940 North South Component (Peknold Version)
1559 points at equal spacing of 0.02 sec
Points are listed in the format of 8F10.5, i.e., 8 points across in a row with 5 decimal places

The units are (g)

*** Begin data ***

. 202							
0.00630	0.00364	0.00099	0.00428	0.00758	0.01087	0.00682	0.00277
					0.00094		
0.00021	0.00444	0.00867	0.01290	0.01713	-0.00343	-0.02400	-0.00992
0.00021	0.00111	0.01653	0.02779	0.03904	0.02449	0.00995	0.00961
					-0.03365		
0.00926	0.00892	-0.00466	-0.01004	-0.03242	-0.00000	0.00120	0.01001

We start by the equation of motion for SDOF system, using relative motion to support subjected to suppose acceleration of \ddot{u}_g

$$m\ddot{u}_r + c\dot{u}_r + ku_r = \overbrace{-m\ddot{u}_g}^{\text{effective force}}$$

The ground acceleration \ddot{u}_g is given from the El-centro earthquake measurements.

Solve using the method of linear acceleration. We start by writing the above equation as

$$m\Delta\ddot{u}_i + c\Delta\dot{u}_i + k\Delta u_i = -m\Delta\ddot{u}_{g_i}$$

Where in the above all the mass displacement, velocity and acceleration are relative to the support and are not the absolute values.

Rewrite the above, to remove the unknown mass m as follows

$$\Delta \ddot{u}_i + 2\zeta \omega_n \ \Delta \dot{u}_i + \omega_n^2 \ \Delta u_i = -\Delta \ddot{u}_{g_i}$$
 (1)

Following the analysis of the text book, from equation 6.36 on page 186, and using $\Delta \ddot{u}_{g_i} = \ddot{u}_{g_{i+1}} - \ddot{u}_{g_i}$ we have the following expression for the change of displacement at time step i

$$\Delta u_i = \frac{-(\ddot{u}_{g_{i+1}} - \ddot{u}_{g_i}) + \frac{6}{\Delta t}\dot{u}_i + 3\ddot{u}_i + 2\zeta\omega_n(3\dot{u}_i + \frac{\Delta t}{2}\ddot{u}_i)}{\omega_n^2 + \frac{6}{\Delta t^2} + \frac{3\times2\zeta\omega_n}{\Delta t}}$$
(2)

and hence we can now find u_{i+1} using

$$u_{i+1} = u_i + \Delta u_i \tag{3}$$

Now, we can find $\Delta \dot{u}_i$ from equation 6.31 in the book

$$\Delta \dot{u}_i = \frac{3}{\Delta t} \Delta u_i - 3\dot{u}_i - \frac{\Delta t}{2}\ddot{u}_i$$
 (4)

Hence

$$\dot{u}_{i+1} = \dot{u}_i + \Delta \dot{u}_i \tag{5}$$

And $\Delta \ddot{u}_i$ is obtained directly from equation (1) above

$$\Delta \ddot{u}_i = -\Delta \ddot{u}_{g_i} - 2\zeta \omega_n \ \Delta \dot{u}_i - \omega_n^2 \ \Delta u_i$$
 (6)

Hence

$$\ddot{u}_{i+1} = \ddot{u}_i + \Delta \ddot{u}_i \tag{7}$$

Now that $u_{i+1}, \dot{u}_{i+1}, \ddot{u}_{i+1}$ have been obtained, the process is repeated for the next step.

We start the process by using the initial conditions of

$$u_0=0$$

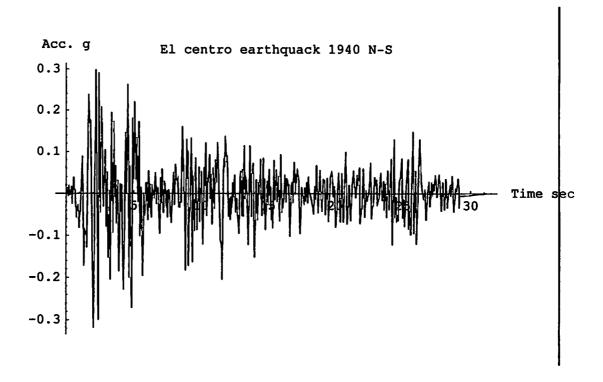
$$\dot{u}_0 = 0$$

The El-centro data file gives the values of \ddot{u}_{g_i} , which we will use to solve this problem. $\Delta t = 2 \sec$ for this data.

Hence the algorithm is as follows

1.
$$i = 1, u_i = \dot{u}_i = 0$$

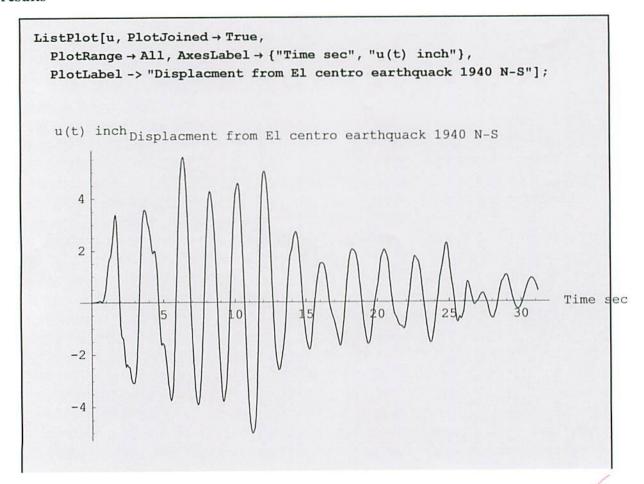
- 2. read \ddot{u}_{g_i} and $\ddot{u}_{g_{i+1}}$ from El-centro file, and find $\Delta \ddot{u}_{g_i} = \ddot{u}_{g_{i+1}} \ddot{u}_{g_i}$
- 3. Find Δu_i from eq (2). Find u_{i+1} from eq (3)
- 4. Find $\Delta \dot{u}_i$ from eq (4). Find \dot{u}_{i+1} from eq (5)
- 5. Find $\Delta \ddot{u}_i$ from eq (6). Find \ddot{u}_{i+1} from eq (7)
- 6. i = i + 1 and go to step 2. Stop when i is the length of the el-centro data less than 1


The following is a listing of the program and the output

EL-Centro Earthquake 1940 N-S response analysis by Nasser Abbasi

```
Remove["Global`*"];
SetDirectory["E:/nabbasi/data/nabbasi_web_Page/my_courses/
UCI_COURSES/CREDIT_COURSES/fall_2006/CEE_247/HWs/HW4"];
```

Load El-Centro data and plot the earthquack recorded accelration


```
data = Import["el_centro.txt", "Table"];
dataLength = 8 Length [data];
g = Table[{0, 0}, {dataLength}];
t = Table[0, {dataLength}];
u = Table [ {0, 0}, {dataLength}];
v = Table[{0, 0}, {dataLength}];
acc = Table[{0, 0}, {dataLength}];
delT = 0.02; (*sec*)
k = 0:
currentTime = 0;
For [i = 1, i \le Length[data], i = i + 1,
  For [j = 1, j \le 8, j = j + 1,
    k = k + 1;
    g[[k, 1]] = currentTime;
    u[[k, 1]] = currentTime;
    v[[k, 1]] = currentTime;
    acc[[k, 1]] = currentTime;
    g[[k, 2]] = data[[i, j]];
    currentTime = currentTime + delT;
   }
  1
 ];
ListPlot[g, PlotJoined → True,
  PlotRange → All, AxesLabel → {"Time sec", "Acc. g"},
  PlotLabel -> "El centro earthquack 1940 N-S"];
```


■ Implementation of Linear Accelration step-by-step algorithm

```
u[[1, 2]] = 0.;
 v[[1, 2]] = 0.;
 \xi = 0.05;
 ω = π;
 gConversionFactor = 32.174 * 12;
For [i = 1, i < dataLength, i = i + 1,
                     delg = (g[[i+1, 2]] - g[[i, 2]]) gConversionFactor;
                   delU = \frac{1}{\omega^2 + \frac{6}{delT^2} + \frac{3*2\varepsilon\omega}{delT}} \left( -delg + \frac{6}{delT} v[[i, 2]] + \frac{6}{d
                                                3 acc[[i, 2]] + 2 \xi \omega \left(3 v[[i, 2]] + \frac{delT}{2} acc[[i, 2]]\right);
                     u[[i+1, 2]] = u[[i, 2]] + delU;
                   delV = \frac{3}{delT} delU - 3v[[i, 2]] - \frac{delT}{2} acc[[i, 2]];
                     v[[i+1, 2]] = v[[i, 2]] + delV;
                     delAcc = -delg - 2 \xi \omega delV - \omega^2 delU;
                      acc[[i+1, 2]] = acc[[i, 2]] + delAcc;
```

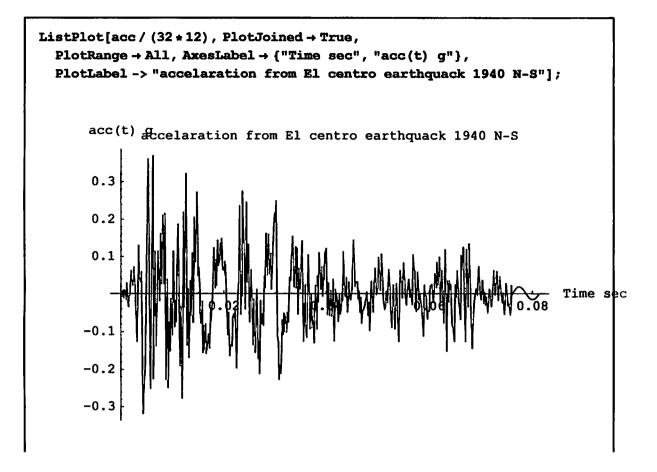
■ Plot results

Super

```
ListPlot[v, PlotJoined → True,
PlotRange → All, AxesLabel → {"Time sec", "v(t) in/sec"},
PlotLabel -> "speed from El centro earthquack 1940 N-S"];

v(t) in/segpeed from El centro earthquack 1940 N-S

20


10

10

10

Time sec

-10
```

