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Undersampled Radial MRI with Multiple Coils. Iterative
Image Reconstruction Using a Total Variation Constraint

Kai Tobias Block,* Martin Uecker, and Jens Frahm

The reconstruction of artifact-free images from radially encoded
MRI acquisitions poses a difficult task for undersampled data
sets, that is for a much lower number of spokes in k-space than
data samples per spoke. Here, we developed an iterative recon-
struction method for undersampled radial MRI which (i) is based
on a nonlinear optimization, (ii) allows for the incorporation of
prior knowledge with use of penalty functions, and (iii) deals
with data from multiple coils. The procedure arises as a two-
step mechanism which first estimates the coil profiles and then
renders a final image that complies with the actual observations.
Prior knowledge is introduced by penalizing edges in coil pro-
files and by a total variation constraint for the final image. The
latter condition leads to an effective suppression of undersam-
pling (streaking) artifacts and further adds a certain degree of
denoising. Apart from simulations, experimental results for a
radial spin-echo MRI sequence are presented for phantoms and
human brain in vivo at 2.9 T using 24, 48, and 96 spokes with 256
data samples. In comparison to conventional reconstructions
(regridding) the proposed method yielded visually improved
image quality in all cases. Magn Reson Med 57:1086-1098,
2007. © 2007 Wiley-Liss, Inc.
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INTRODUCTION

Radial encodings in MRI sample k-space along spokes
instead of parallel rows as for conventional phase-encoding
schemes. Although radial imaging has already been used
by Lauterbur in his seminal paper on MRI (1), pertinent
trajectories did not find a wide range of applications.
Recently, however, radial acquisition techniques regained
strong interest as documented by a number of excit-
ing developments. Prominent examples include highly
constrained backprojection approaches for significantly
accelerated time-resolved MRI (2,3), k-space weighted pro-
jection reconstruction methods for multicontrast MRI (4,5),
and techniques for MRI with ultra-short echo times (6).
The renewed interest in radial imaging arises from its
unique properties. First of all, each spoke of a radial
data set contains an equal amount of low and high spa-
tial frequencies, which leads to advantageous undersam-
pling properties. Second, the Fourier transform of each
spoke corresponds to the complex profile of a projec-
tion through the object in an angle perpendicular to the
direction of the spoke. This relationship is a direct conse-
quence of the Fourier slice theorem and assigns a geometric
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meaning to each single spoke. It allows for the adoption
of reconstruction techniques from transmission tomogra-
phy including consistency criteria, which can be used
for artifact correction (7). Third, radial trajectories impose
a drastic oversampling of the central portion of k-space
which, though apparently inefficient, turns out to be ben-
eficial in certain practical scenarios. For example, it has
been consistently reported that radial trajectories provide
a low sensitivity to object motion (8,9). Moreover, the
central oversampling may be exploited for multicontrast
MRI and parallel imaging (4,10) by reconstructing multiple
low-resolution images from undersampled data sets.

The advantages of radial imaging are counterbalanced
by a number of complications that accompany experimen-
tal implementations. First, when using gradient echoes,
off-resonance effects from field inhomogeneities may lead
to significant image artifacts. Second, due to the non-
Cartesian sampling of k-space, the image reconstruction
process becomes a sophisticated task, which so far ham-
pered the acceptance of radial MRI in many circumstances.
While conventional Fourier imaging techniques simply
arrange the acquired lines of phase-encoded data on a
rectangular grid and perform a 2D Fourier transformation,
radial encodings sample the object’s Fourier transform at
irregular nonequidistant positions. Thus, it is not intu-
itively clear how to obtain a rectangular image from the data
samples. Moreover, the two commonly used radial image
reconstruction schemes, namely filtered back projection
and regridding, require the acquisition of a large number
of spokes to provide adequate image quality or, conversely,
cause substantial image artifacts for undersampled data
sets.

The purpose of this work was to design an iterative recon-
struction method for undersampled radial MRI, that is for
radially encoded MRI data sets with a much lower num-
ber of spokes than data samples per spoke. The approach
may be exploited to reduce the acquisition time of high-
resolution images to a degree neither achievable by (par-
tial) Fourier MRI nor conventional reconstructions from
projections.

THEORY
Conventional Radial Image Reconstructions

MRI acquisitions using radial trajectories are usually recon-
structed with either projection reconstruction or regrid-
ding methods. Projection reconstruction is based on the
Fourier slice theorem, which allows to recast the prob-
lem into an image reconstruction from projection profiles,
that is the Fourier transforms of the acquired spokes. The
filtered backprojection method, originally developed for
X-ray computed tomography, can then be applied to obtain
the image by smearing all projection profiles over a matrix
in a direction opposite to that of each profile (11). Prior to
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this backprojection step it is necessary to compensate for
the oversampling of the k-space center which is usually
accomplished by filtering the profiles with the well-known
ramp filter |k|.

The more frequently used regridding technique inter-
polates the data onto a rectangular grid in the frequency
domain and subsequently performs a Fourier transforma-
tion (12). The interpolation is done by convolving the spoke
data with an approximate sinc kernel followed by an eval-
uation of the convolved data at the grid positions. The
Kaiser—Bessel window has been shown to provide a good
interpolation quality at a reasonable window width. It is
typically used as interpolation kernel (13)
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with L the desired kernel width, Iy(k) the zero-order mod-
ified Bessel function of the first kind, and B a shape
parameter which can be selected according to an equation
reported by Beatty et al. (14). The convolution with the
Kaiser—Bessel window in the frequency domain leads to an
undesired intensity modulation in the image domain. This
so-called roll-off effect can be compensated for by dividing
the image by the (approximate) Fourier transform of the
Kaiser—Bessel window right after Fourier transformation
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FIG. 1. Regridding reconstructions
(Shepp—Logan phantom, 256x256 matrix)
using simulated data from 402, 64, and
24 spokes (256 data samples). The lower
right panel shows the Fourier transform
of the image reconstructed from 24
spokes. It reveals unmeasured gaps in
k-space in between spokes (arrows). The
reconstructions from 64 and 24 spokes
suffer from streaking artifacts caused by
undersampling.
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Similar to projection reconstruction, it is necessary to com-
pensate for the varying sample density of the trajectory
which again can be achieved by weighting the data with
the ramp filter |k| before performing the convolution. In
the context of regridding, this strategy is termed density
compensation.

Basically, radial image reconstruction by projection
reconstruction and regridding is equivalent. The major
difference between both approaches is the (frequency or
image) domain where the interpolation step is carried out.
Indeed, both approaches yield very similar results which
only differ with respect to the applied interpolation. There-
fore, we limit the following discussion to the regridding
approach.

For a sufficiently high number of spokes, regridding
allows for an accurate reconstruction of the object as shown
in Fig. 1 for the case of 402 spokes (256 sample points each).
In fact, according to the literature, 7 - n spokes have to be
obtained for an image with a base resolution of n x n sample
points (15). While this criterion ensures that the outmost
samples of two neighbouring spokes have a maximum dis-
tance of Ak = 5y in line with the well-known Nyquist
condition for conventional Fourier imaging, it prolongs the
acquisition of a radial image by about 57% relative to that
of a corresponding fully sampled Fourier image.

If one reduces the number of acquired spokes far below
the recommended value, the reconstructed image presents
with two characteristic features: while most object fea-
tures remain visible at good spatial resolution, the use of
a regridding (or filtered back projection) algorithm results
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in so-called streaking artifacts. Both properties are demon-
strated in Fig. 1 for areduction of the number of spokes from
402 to 64 or even 24. Although the strength of the streak-
ing artifacts increases with the extent of undersampling, it
is remarkable how much information about the object can
still be seen in an undersampled image with only 24 spokes.
The origin of the streaking artifacts may be best understood
when considering the Fourier transform of the undersam-
pled image also shown in Fig. 1. The resulting k-space
pattern matches the acquired data at the spoke positions,
but in-between the Fourier transform is zero (except for a
small surrounding of the spokes resulting from the con-
volution). Obviously, this solution of piecewise constant
areas and many edges is not an accurate representation of
the Fourier transform of the true image which explains the
failure of the regridding method.

Radial Image Reconstruction as Inverse Problem

Suppose we stack the measured data from all spokes into
a vector y, where each entry y; corresponds to a single
sample, then the image reconstruction process can be seen
as estimating a stacked image vector X with n x n pixel
intensities x; from the given data vector y. When acquir-
ing only a limited number of spokes, the size of the data
vector y is usually smaller than the desired image vector X.
Because in this case the problem is underdetermined, one
may address it in the opposite direction: suppose we have
given an image X and want to calculate the corresponding
data vector y. This can be achieved by a Fourier transforma-
tion of the image and an evaluation of the image’s Fourier
transform at the trajectory positions using a k-space inter-
polation. The necessary linear operations can be combined
into a single matrix A, denoted as system matrix, so that
the forward problem may be written as

y = AX. [3]

Instead of trying to directly invert this equation to obtain
an image vector X from a given data vector y, it is more
advantageous to iteratively estimate an image vector x that
fits to the given data vector y. This is because the problem
is not only ill-posed but also very large.

How well the image estimate fits to the measured data can
be measured by calculating the L, norm of the residuum

@) = 1A% - 71 [4]

Because we want to find an image that best represents the
measured data, we are looking for a vector X that minimizes
the functional [4]

X = argmin ®(X). [5]
X

Finding a solution to this equation requires a highly effi-
cient optimization method due to the large size of the
parameter space. A suitable approach for such problems
is the conjugate gradient method. It has initially been pre-
sented by Hestenes and Stiefel in 1952 for the solution of
linear systems and in the meantime successfully applied
to MRIreconstruction problems (16). The method has been
extended to nonlinear optimization by Fletcher and Reeves
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in 1964 and since then a number of optimized nonlinear
conjugate gradient approaches have been developed (17).
Recently, Hager and Zhang (18) presented a version with
improved convergence properties, which we found appro-
priate to solve Eq. [5].

The conjugate gradient method is an iterative two-step
scheme, which is repeated until a satisfying solution has
been found. First, a search direction is estimated in param-
eter space and, second, a line search into that direction
is performed until the minimum of the functional in
this direction has been identified. The search direction
is obtained by calculating the gradient at the actual esti-
mate and by superposing it with the prior search direction
scaled by a factor that guarantees the conjugacy of succes-
sive search directions. The gradient of the functional [4] is
given by

V(%) = A'Ax — A7y = A*(AX - 7), (6]

where A* denotes the adjoint matrix to A, that is the trans-
posed matrix with each entry replaced by its complex
conjugate. As the matrix A performs a Fourier transforma-
tion followed by an interpolation to the spokes, the matrix
A? performs an interpolation from the spokes to a grid
followed by an inverse Fourier transformation. It is impor-
tant to point out that A” is not the inverse matrix to .A.
Obviously, the optimum image estimate is reached if the
gradient of the functional vanishes.

The right part of Eq. [6] gives insight into how the recon-
struction process works. At every step of the algorithm, the
actual image estimate X is mapped to the frequency domain
by multiplication with A. It is then compared how well the
estimate fits to the measured data by calculating the differ-
ence to y. If the estimate is good enough, then the residuum
vector contains only small entries, otherwise it contains
large entries. In this case, the algorithm needs to know how
to modify the image estimate in order to improve the match
of the samples in the frequency domain. This information
is obtained by mapping the residuum back to the image
space by matrix multiplication with A?,

The middle part of Eq. [6] allows for another view of
the reconstruction process. If the trajectory undersamples
k-space, information is lost when applying matrix A to
obtain the spoke data that corresponds to the image esti-
mate. This can be seen as projecting the image’s Fourier
transform to the spokes of the trajectory. Successive appli-
cation of A", that is A*AX, may then be understood as
convolving or blurring the actual image estimate with the
point spread function of the trajectory. A multiplication
of the adjoint matrix A" with the data vector y gives an
image comparable to that of a regridding solution (except
for the missing density compensation). Trying to match the
blurred image estimate with the quasi regridding image,
which is also blurred due to undersampling, is a gen-
eral deconvolution approach. This has previously been
pointed out by Delaney and Bresler (19) for the case of
iterative parallel-beam tomography reconstruction. Indeed,
Eq. [4] has the same form as common approaches used in
image restoration and image denoising. The quality of the
deblurring depends on how well the system matrix .4 mod-
els the true process underlying the generation of the data
vector y.
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FIG. 2. lllustration of two equally valid reconstruc-
tions of a rectangle from only two radial projections.
(a) True solution and (b) solution suffering from
streaking artifacts. Both solutions are identical at the
measured positions (spokes) in k-space. Numbers
indicate hypothetical pixel intensities.

Regularization by A Priori Information

The reconstruction of an undersampled radial image by
optimizing Eq. [4] still leads to streaking artifacts. This
is not surprising as the procedure does not measure the
accuracy of the estimate at any other position in k-space
than at the positions of the spokes. For illustration, Fig. 2
shows two reconstructions of a rectangle from just two
spokes. While Fig. 2a represents the true object, the image
in Fig. 2b is degraded by streaking artifacts. Equation [4]
cannot tell which solution is better, because both solu-
tions yield an identical pattern in k-space at the positions
of the spokes. Differences only occur in between spokes.
To obtain a better estimate than the regridding solution,
it is therefore necessary to extend the functional [4] by
criteria that introduce some kind of quality weighting by
adding penalties. This concept is referred to as regular-
ization and, of course, requires some a priori knowledge
about the true object. The challenge in selecting respec-
tive criteria is that they should not be too specific about
the object and keep the problem optimizable. This requires
the penalties to be convex functions, which allow for global
optimization. Accordingly, the regularized functional takes
the form

- 1 I N
®(%) = A% - 73 + inﬂi(x), [7]

where R;(X) are the penalty functions. The coefficients A;
represent tuning factors that allow for shifting the pref-
erence from matching the image to the measured data to
satisfying the a priori knowledge. In fact, because mea-
sured data is contaminated by noise, the search for a
perfect match of the image estimate to the measured data
is usually not a good strategy as is it drives the image esti-
mate to render the experimental noise. To compensate for
this effect, it is necessary to adjust the coefficients A; in
accordance with the signal-to-noise ratio of the acquired
data.

For radial MRI, there are several choices of how to
restrict the solution space of the image estimation pro-
cess. If knowledge about the size of the object is available,
it is possible to penalize image intensity outside of the
potential object. In particular, due to the rotational sym-
metry of radial sampling, all image intensity outside a
circular field of view (FOV) can be usually considered
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as artifactual. A corresponding penalty function can be
formulated as

Rrov(X) = Z¢(Xi]y [8]

where

|X1‘\2 Xj ¢ cFOV
ol =1, x; € cFOV 1}
and cFOV denotes the circular FOV.

Another penalty, which turned out to be very effective
in general image restoration, is the restriction of parameter
space to positive values. It can be achieved by using the
penalty function

Hpos(}?] = Z‘p(Xi]; [10]
where
x2 xi <0
i) = ! . 11
o(x7) 0 x>0 [11]

Suppression of negative values prevents the algorithm
from inserting negative fill values into the image, a ten-
dency often performed by the unconstrained algorithm to
better match the measured data. This, however, leads to
inaccurate image estimates.

At first glance, the exclusion of negative values seems
to ideally apply to the MRI situation where the measured
physical quantity, that is the proton density modulated by
some relaxation process, is a positive unit. Unfortunately,
however, the use of phased array coils with a complex sen-
sitivity profile as well as the occurrence of phase variations
within the object forbid the direct application of this cri-
terion. In most imaging situations, neither the real nor the
imaginary part of the image can be restricted to positive
values.

A third penalty, which has been successfully used in
image restoration, is the restriction of total variation (TV)
initially presented by Rudin et al. in 1992 for noise removal
(20). The basic assumption of this idea is that the object
consists of areas with constant (or only mildly varying)
intensity, which applies quite well to medical tomographic
images. If the object is piecewise constant, then the best
representation of all image estimates that match at the
spoke positions should be given by the one with the lowest



1090

derivatives at all pixel positions, that is the one minimizing
the total variation

Rry(X) = ) IDx(x3)| + Dy (xi)l, [12]

1

where Dy and D, denote the derivatives in x and y direc-
tion, repectively. The first order derivative at the pixel
position (n, m) can be calculated from the finite difference
between neighboring pixels

D;[f)(m, n) = x(m,n) — x(m — 1, n)

DW(m, n) = x(m,n) — x(m, n — 1). [13]

y

It is important to note that the total variation in Eq. [12]
depends on the modulus of the derivatives. This depen-
dency, well-known in the context of L; optimization,
ensures edge preservation in the image and especially
penalizes oscillations, which helps to suppress Gibbs ring-
ing artifacts as well as noise. Replacing the modulus by a
square dependency leads to an image with global smooth-
ness because intensity changes between neighboring pixels
become very strongly penalized.

The simple use of first order derivatives for the total vari-
ation constraint [12] may create patchy images as it tends
to generate regions with constant intensity. It is therefore
preferable to rely on the second order derivatives, which
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FIG. 3. Radial image reconstructions
(Shepp—Logan phantom, 256 x 256 matrix),
using simulated data from 24 spokes (256
samples). (Top left) Regridding and (top
right) the proposed iterative technique with
prior knowledge. (Bottom) Corresponding
Fourier transforms. The iterative technique
reconstructs the image of the object without
streaking artifacts. Accordingly, its Fourier
transform recovers the unmeasured gaps in
k-space in-between spokes.

then allows for image regions with constant intensity gra-
dients

D®(m,n) = x(m —1,n) — 2 - x(m, n) + x(m + 1, n)
D}(,z](m, n)=x(m,n—-1)—-2 -x(m,n)+x(m,n+1)
Dg,](m,n) =x(m,n) — x(m—1,n)

—x(m,n—-1)+x(m—-1,n—1). [14]

As pointed out by Geman and Yang (21), it is sometimes
advantageous to use a combination of first and second order
derivatives.

The upper row of Fig. 3 shows reconstructions of the
Shepp-Logan phantom from 24 spokes obtained either by
regridding or the proposed inverse formulation with penal-
ties as presented in this section. A comparison of the images
clearly demonstrates the superior performance of the new
method in reducing streaking artifacts which for the sim-
ulated data have been effectively removed. The lower row
of Fig. 3 depicts the corresponding Fourier transforms. It
turns out that the incorporation of a priori information by
appropriate penalty functions leads to a proper recovery
of k-space representations in between the spokes. Figure 4
shows a schematic flow chart of the iterative reconstruction
technique.

Radial Image Reconstruction for Multiple Coils

Two more difficulties arise when employing the described
iterative strategy for the reconstruction of real MRI data.
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First, the acquired signal is complex and, although the final
result is a real valued image, it is only possible to remove
the phase after spatially resolving the object. While this
is usually done by calculating the magnitude, this opera-
tion is not linear and cannot be integrated into the system
matrix, so that it remains necessary to deal with the com-
plex nature of the images. Second, modern MRI systems use
phased-array coils each of which has a different intensity
profile and a variable phase. Again, a suitable combination
of the signals from all individual coils can only be obtained
after spatially resolving the object. As a consequence, any
radial image reconstruction has to cope with the different
coil signals during the entire process.

To this end we propose an iterative two-step reconstruc-
tion approach. The first step attempts to obtain profiles for
all coils, which are then used in the iterations of the sec-
ond step to combine the single coil channels and to remove
the phase each time when mapping between the frequency
domain and image space. Thus, the second step renders a
combined and real valued image. An attractive feature of
this approach is that no reference data nor shared data is
needed to estimate the coil profiles.

In the first step, the signals from all coil channels are han-
dled separately. The real and imaginary parts are treated as
independent parameters leading to a complex valued image
estimate for every coil channel. It is known that MRI coil
profiles are smooth functions that vary only slowly and
do not have sharp edges. This knowledge is incorporated
by using quadratic regularization of the image derivatives,
which leads to globally smooth images as pointed out
before

Reoil(X) = ) Dx(x:)* + Dy (x:)%, [15]

1

where Dy and Dy, are the known derivative operators. After
finishing the iterations for all coils, a sum-of-squares image
is created. A division of the single channel images by the

sum-of-squares image yields the respective coil profiles.
Noteworthy, these estimated coil profiles also include the
phase variations related to the object as the real valued sum-
of-squares image has been taken as a reference. Because the
penalty function Rg;(X) depends quadratically on X, the
line search that is part of the conjugate gradient iteration,
requires only one step and only a low number of iterations
is needed to obtain a reasonable image. Therefore, the coil
profile estimation step takes only moderate computational
time.

For the second reconstruction step, the raw data from
all coil channels is stacked into the data vector y. The
system matrix A is extended by a multiplication with the
corresponding coil profile before performing the Fourier
transformation for every channel. Figure 5 shows a diagram
of the operations that are executed by the system matrix
A and the adjoint matrix A* to map between frequency
and image space. By combining data available from all coil
channels into the data vector y, the algorithm renders an
image estimate that complies with the observations from
all coils. Further, removing the phase variations using the
estimated coil profiles allows to discard the imaginary part
of the image estimates as well as to apply constraints based
on non-negativity, which otherwise would not be possi-
ble. Noteworthy, a combined coil reconstruction ensures
that the total variation constraint remains applicable in a
phased-array setup. Otherwise, the intensity modulation of
the coil profiles would conflict with the idea of piecewise
constant images.

MATERIALS AND METHODS
MRI Data Acquisition

As a first proof-of-principle application of the proposed
technique for reconstructing undersampled radial images,
we acquired data with a radial 2D spin-echo MRI sequence.
Spin echoes rather than gradient echoes were chosen
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FIG. 5. Schematic diagram of the procedural implementations of
(left) the system matrix .A and (right) the adjoint system matrix A"
that are used to map from image domain to frequency domain and
vice versa. For details see text.

to avoid putative complications from the sensitivity to
off-resonance effects, which are not related to the recon-
struction process studied here. All measurements were
conducted at 2.9 T (Siemens Magnetom TIM Trio, Erlan-
gen, Germany) using a receive-only 12-channel head
coil in triple mode yielding 12 channels with differ-
ent combinations of the coils. Written informed consent
was obtained from all subjects prior to the examina-
tion.

Block et al.

The MRI sequence was derived from a standard spin-
echo 2D sequence of the manufacturer and modified to
radial acquisitions with a readout oversampling factor
of two. As radial imaging is sensitive to gradient tim-
ing errors, we used a technique presented by Speier and
Trautwein (22) to correct for such errors. In fact, gradi-
ent deviations cause an incorrect trajectory and lead to
smearing artifacts in a regridding reconstruction that may
become emphasized by iterative reconstructions due to
repeated imprecise interpolations. After calibration of the
MRI system the chosen correction effectively suppressed
respective artifacts.

All images were acquired with a base resolution of 256
pixels covering a 230 mm FOV (slice thickness 2 mm).
The number of spokes varied from 8 to 96. The phantom
images were acquired with a repetition time TR = 4000 ms
and echo time TE = 11ms (bandwidth 180 Hz/pixel),
while the in vivo images of the human brain were acquired
with TR/TE = 2500/50 ms (bandwidth 180 Hz/pixel) and
TR/TE = 3000/80 ms (bandwidth 90 Hz/pixel) for T2
contrast.

Radial Image Reconstruction

Our current implementation involves an online regrid-
ding reconstruction of radial images. Subsequently, the
acquired raw data is exported from the scanner and
reconstructed offline using our in-house software pack-
age MRISim, which has been written in C/C++ using the
libraries GNU Scientific Library, FFTW3, QT4, Blitz++,
and the nonlinear solver bench from the restorelnpaint
project.

A look-up table is calculated in a preparation step to
speed up the interpolation operations that are repeatedly
carried out within the iterations. The look-up table con-
tains all coefficients needed to interpolate from spoke to
grid data and vice versa. The coefficients are calculated
using a Kaiser—Bessel window given by Eq. [1] with L = 6
and B = 13.8551. Further, a matrix containing the values
for the roll-off correction is precalculated.

Prior to starting the iterations for a particular image, the
phase offset of the central k-space sample of each spoke
is determined and removed from the spoke data. This
step corrects for interference artifacts that arise due to the
overlapping k-space coverage of the spokes when a phase
offset between single spokes is present. Such phase off-
set deviations are, for example, caused by through-plane
motion.

A second preprocessing step exploits the fact that the
zeroth moment (or sum) of a projection through an object
is independent of the projection angle (7). Thus, the zeroth
moment of the projections can be used to perform a first-
order correction for spoke intensity deviations which, for
instance, can occur when measuring in a transient phase
of the magnetization, that is during the approach to steady-
state conditions. In more detail, the data of each spoke
is Fourier transformed, the zeroth moment is calculated,
and the resulting spoke intensity is used in the iterations
to weight the calculated spokes before matching them to
the measured data. The procedure eliminates potential
smearing artifacts.
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In the coil estimation step, we use a moderate penalty
for image intensity outside the cFOV by setting Arov = 1
in Eq. [7]. Edges are strongly penalized by quadratically
constraining the first-order derivatives of the image inten-
sity using Eq. [15] with Aqy = 10. In the final image
reconstruction step, we strongly penalized image intensity
outside the cFOV by setting a high value for the corre-
sponding coefficient Apgy or even reject all intensity in
this area. To incorporate the total variation constraint,
the magnitude of the image derivatives was penalized
with a weighting of 0.77 for the first-order and 0.23 for
the second-order as suggested by Geman and Yang (21).
A value of Aty = 0.0001 for the total variation penalty
turned out as a robust choice for our present study. Fur-
ther, we penalized negative values by setting A,0s = 5,
which stabilized the convergence process but also slowed
it down.

Currently, we are running the reconstruction steps for a
fixed number of iterations. The images presented in this
work were rendered using 30 iterations for the coil estima-
tion and 120 iterations for the final image reconstruction
step. However, in many cases, a reasonable image quality
was also obtained with a much smaller number of itera-
tions, typical numbers being 10 iterations for the coil esti-
mation and 20 iterations for the final reconstruction step.

RESULTS
Phantom Studies

Figure 6 shows experimental coil profiles that were esti-
mated by the coil estimation step from a data set of
48 spokes obtained for a phantom. The profiles are smooth

FIG. 6. Estimated MRI coil profiles (phantom,
256 x 256 matrix), using experimental data from 48
spokes (256 samples) and the proposed iterative
technique. The profiles correspond to the four pri-
mary modes of the 12-channel receive-only head
coil. The MRI sequence was a radial spin-echo
sequence (TR/TE = 4000/11 ms, 230 mm FOV,
bandwidth 180 Hz/pixel).
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inside the object and do not contain visible object features
as expected. The algorithm is unable to determine the coil
profile outside the object due to the absence of any signal,
but this poses no problem for the image reconstruction.
The corresponding images of the phantom are summa-
rized in Fig. 7 together with reconstructions for 96 and
only 24 spokes. For comparison, the upper row shows the
results of the regridding approach with a sum-of-squares
combination of the multiple coil images.

Obviously, regridding reconstructions suffer from streak-
ing artifacts that increase with decreasing number of
spokes. In contrast, the iterative approach renders images
without any visible or at least strongly reduced streak-
ing artifacts while maintaining sharp edges in line with
findings by Chang et al. using a related approach (23).
The proposed method is able to reconstruct a high-quality
image of the object from only 48 spokes. In fact, there is only
a slight gain in image quality when the number of spokes is
increased. In the case of 24 spokes, the algorithm again out-
performs the regridding solution. Nevertheless, the method
fails in fully recovering the true object and residual streak-
ing artifacts remain visible. However, it should be noted
that a reconstruction from 24 spokes corresponds to a
data reduction factor of more than 16 compared to the
402 spokes recommended for a 256 x 256 image.

In Vivo Studies

Similar to the phantom studies, Fig. 8 compares recon-
structions of radial images from the human brain in vivo
using regridding and the proposed iterative method for
96, 48, and 24 spokes. Again, regridding suffers from pro-
nounced streaking artifacts outside as well as inside of the
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FIG. 7. Radial image recon-
structions (phantom, 256 x 256
matrix), using experimental data
from 96, 48, and 24 spokes
(256 samples). (Top) Regridding
and (bottom) the proposed itera-
tive technique. Parameters as in
Fig. 6.

brain, although the artifacts are less clearly visible than
in the phantom images due to the occurrence of more
complex structural details. Conversely, streaking artifacts
are removed (48 spokes) or at least noticeably reduced
(24 spokes) when using the iterative approach. Further, the
application of the total variation penalty leads to a marked
denoising of the images.

The improvement in image quality of the iterative recon-
struction technique relative to regridding is even more
visible in Fig. 9 magnifying parts of the brain sections from
Fig. 8 by a factor of three. To demonstrate the limits, Fig. 10
compares brain sections obtained by iterative reconstruc-
tions from 48, 32, 24, 16, 12, and 8 spokes. Of course, the
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data reduction from 48 to 8 spokes is accompanied by a loss
ofresolution. The effect is best appreciated for selected fine
structures, whereas gross anatomical features such as the
ventricles are less affected. Simultaneously, total variation
ensures a pronounced reduction of the noise, so that the
overall image appearance even for extreme undersampling
is of surprising quality.

DISCUSSION
Remaining Artifacts

The results shown in Figs. 7-10 demonstrate that the pro-
posed reconstruction technique for undersampled radial

FIG. 8. Radial image recon-
structions (human brain, 256 x 256
matrix), using experimental data
from 96, 48, and 24 spokes (256
samples). (Top) Regridding and
(bottom) the proposed iterative
technique. Parameters as in Fig. 6
except for TR/TE = 2500/50 ms.
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MRI yields images with clearly improved quality over the
conventional regridding approach. Nevertheless, the algo-
rithm is not able to fully remove the streaking artifacts in
the heavily undersampled case of 24 spokes. This effect
can be explained by closer inspection of the total variation
constraint, which plays a central role for the removal of
such artifacts or, respectively, the recovery of the interspoke
k-space information in the frequency domain.

The total variation concept is based on the assump-
tion that the object is piecewise constant, which implies
that only a limited number of edges and intensity jumps
are present in the image. According to the underlying
theory of compressed sensing, it is under certain circum-
stances possible to recover a signal from undersampled

FIG. 10. Radial image recon-
structions (human brain, 256 x
256 matrix), using experimen-
tal data from 48, 32, 24, 16,
12, and 8 spokes (256 sam-
ples) using the proposed itera-
tive technique. The MRI sequence
was a radial spin-echo sequence
with fat suppression (TR/TE =
3000/80 ms, 230 mm FOV, band-
width 90 Hz/pixel).
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FIG. 9. Magnified views of the
same data as shown in Fig. 8.

data, if a basis exists in which the signal can be represented
sparsely (24). For total variation, this basis is given by the
image’s derivative. Thus, the object can be recovered, if it
can be represented by a limited or sparse number of edges.
This condition is obviously fulfilled by the Shepp-Logan
phantom shown in Fig. 3. In this case, the major contribu-
tion to the total variation of the regridding solution comes
from the streaks that overlap to form a texture-like pattern
in the image. These artifacts can be removed by minimiz-
ing the total variation, so that the object can be perfectly
recovered from only 24 spokes—also stated by Candes
et al. (25). However, the experimental data presented in
Figs. 7-10 fulfills the needed condition less optimal as the
object itself contributes to the total variation of the image, or
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conversely, the total variation cannot be entirely ascribed
to the undersampling artifacts. Hence, the more complex
the actual object, the less accurate can the information be
recovered by restricting the image variation.

Figure 1 illustrates that the width of the streaks from
the undersampling increases with decreasing number of
spokes. The total variation constraint given by Eq. [12] is
based on minimizing the L; norm of the image derivative
and therefore especially penalizes intensity oscillations
while maintaining sharp edges. Accordingly, the removal
of undersampling artifacts by a total variation constraint is
most effective if the overlapping streaks create a strongly
varying texture as in the case of 64 spokes. In contrast, if
the width of the streaks is wide and the object itself has
a certain complexity, then after some iterations the total
variation of the image becomes dominated by the actual
complexity of the object. Further attempts to minimize the
total variation then lead to a removal of actual object fea-
tures. In other words, there is a tradeoff between residual
streaking artifacts and the preservation of object details
that has to be considered when reconstructing a complex
structured object from a low number of spokes. This is
demonstrated in Fig. 11 comparing a regridding solution
with three iterative reconstructions with an increasing
weight on the minimization of the total variation. Because
the strongest weight led to a visible removal of object
detail, it is recommended to choose the weight of the
total variation constraint—given by the coefficient Ary—
with respect to the imaging parameters and the object’s
complexity.

Regardless of this limitation, the proposed reconstruc-
tion technique clearly provided visually improved image
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quality over regridding in all cases tested. Further, it is of
course possible to integrate additional or possibly more
advanced penalties to support the recovery of unmea-
sured information in k-space using prior object knowledge.
These constraints might be based on multiscale transfor-
mations like wavelets or could be motivated by a Bayesian
formulation.

A more general problem that arises when reducing the
number of spokes (or Fourier lines) is the concomitant
decrease of the signal-to-noise ratio (SNR). It also applies
to partial Fourier imaging and parallel MRI. It turned out
that low SNR poses a more severe limitation for the recon-
struction of undersampled radial MRI data sets than the
putative loss of resolution. Although the use of the total
variation constraint ensures a pronounced denoising while
maintaining borders (e.g., compare Fig. 11), it only allows
to smooth noise textures but is, of course, incapable to
recover object information that is not visible at all due to a
low SNR.

Computational Requirements

Without doubt the iterative reconstruction method is by
far more computationally demanding than a regridding
or filtered backprojection technique. In fact, only a sin-
gle evaluation of the functional [7] already doubles the
computational load required for regridding, but multi-
ple evaluations during iteration of the conjugate gradient
algorithm are required. The duration of a single itera-
tion and the number of iterations needed depends on the
degree of undersampling and on the desired reconstruction

FIG. 11. Radial image reconstructions (human
brain, 256 x 256 matrix), using experimental data
from 48 spokes (256 samples). (a) Regridding and
(b—d) the proposed iterative technique with (b) a low
weight, (€) an appropriate weight, and (d) an over-
weight of the total variation constraint. While a
proper choice of the total variation penalty yields
an efficient denoising without compromising reso-
lution, any overweighting causes a loss of object
detail. Parameters as in Fig. 8.
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quality. In general, therefore, it is difficult to give concrete
information on reconstruction times.

The present implementation employed a Dell PowerEdge
2900 server with two Intel Xeon 5060 3.2 GHz dual core
processors and 4 Gb memory for the reconstructions.
Images with a base resolution of 256 x 256 pixels were ren-
dered using a high number of 30 iterations for each of the
12 channels in the coil estimation step and 120 iterations
in the final image reconstruction step. Under these circum-
stances, the reconstruction of a radial image from 48 spokes
took about 520 sec. However, running the reconstruction
with only 10 iterations for the coil estimation and 20 iter-
ations for the final reconstruction already resulted in a
suitable image quality within only about 120 sec. Moreover,
the use of only 4 instead of 12 channels further reduced the
reconstruction time to 43 sec. Finally, there is still potential
for optimizing the speed of our implementation. Neverthe-
less, while these reconstruction times are still too long for a
routine clinical setting, steady progress will not take long to
render iterative reconstruction techniques more generally
suitable for MRL

Extensions

An attractive feature of the proposed method is that it can
easily be adapted to meet different imaging scenarios by
integrating more specific knowledge about the object with
use of additional penalty functions. Based on Bayes the-
orem, basically every kind of a priori knowledge may be
incorporated. A tough limitation, though, is that it is nec-
essary to formulate this knowledge such that the problem
remains optimizable, which implies at least convex penalty
functions.

Furthermore, the system matrix can be extended in order
to model the generation of the measured signal in more
detail. For example, for a multiecho acquisition, it should
be possible to model the signal generation in a time-
segmented way. Possibly, this allows to obtain separate
density and relaxation maps with improved quality over
existing approaches which often mix spokes from differ-
ent echoes and thereby cause smearing artifacts in areas
with strong relaxation. This is because all spokes pass the
k-space center and therefore fuse data with inconsistent
contrasts.

Another idea would be to include a modelling of off-
resonance effects, which pose a significant problem for
radial gradient-echo MRI. This could be done by using a
time-segmented approximation of the local phase evolu-
tion based on field maps. For example, the field map could
be estimated by shifting the echo time of every other spoke.
Subsequently, the reconstruction of separate undersampled
images from the odd and even spokes would render coil
profiles, a field map, and the final combined image from a
single data set.

Although penalizing the total variation is particularly
well suited forradial trajectories due to the strongly varying
patterns created by radial undersampling, this idea can of
course be applied to other trajectories as well. As the tech-
nique does not need a density compensation as required
for regridding, it allows to reconstruct images from arbi-
trary trajectories without the need of prior estimates for
the sample density using Voronoi diagrams or comparable
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methods. A second advantage is that the iterative approach
reconstructs objects with absolute values that are inde-
pendent of the amount of data measured. In contrast, for
regridding the absolute values of the object usually depend
on the total intensity inserted into the raw data matrix.

CONCLUSIONS

This work presents a technique for the iterative reconstruc-
tion of images from undersampled radial MRI acquisitions.
The approach is able to handle data from multiple coils and
allows to incorporate prior information about the object by
introducing suitable penalties. In particular, constraining
the total variation of the reconstructions led to an effec-
tive reduction of streaking artifacts that normally limit
the application of radial undersampling strategies. This
enables to obtain images from only a very limited num-
ber of spokes with markedly improved quality compared
to conventional radial reconstructions. While the current
computational speed of the proposed technique is already
acceptable for scientific purposes, foreseeable technical
progress promises iterative approaches soon to become part
of the MRI instrumentarium for more routine applications.
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