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Projection Reconstruction MR Imaging Using FOCUSS

Jong Chul Ye,1* Sungho Tak,’ Yeji Han,2 and Hyun Wook Park?

The focal underdetermined system solver (FOCUSS) was orig-
inally designed to obtain sparse solutions by successively
solving quadratic optimization problems. This article adapts
FOCUSS for a projection reconstruction MR imaging problem
to obtain high resolution reconstructions from angular under-
sampled radial k-space data. We show that FOCUSS is effective
for projection reconstruction MRI, since medical images are
usually sparse in some sense and the center region of the under-
sampled radial k-space samples still provides a low resolution,
yet meaningful, image essential for the convergence of FOCUSS.
The new algorithm is successfully applied for synthetic data as
well as in vivo brain imaging obtained by under-sampled radial
spin echo sequence. Magn Reson Med 57:764-775, 2007.
© 2007 Wiley-Liss, Inc.
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Projection reconstruction (PR) with radial k-space trajec-
tory was the first MRI k-space trajectory in MR history
(1). However, cartesian k-space trajectory has replaced PR,
mainly because of artifacts of PR that are related to By
inhomogeneity and to gradient nonlinearity (2). However,
recent advances in MR hardware technology have over-
come problems related to By inhomogeneity and gradient
nonlinearity, and interest in PR has thus been revived.
PR has many advantages over the conventional cartesian
k-space trajectory (3). Since no phase-encoding gradient
is used, PR has a shorter minimum TE, which has made
PR particularly desirable for imaging very short T, nuclei
(3-5). Another advantage of PR is its robustness to the
motion artifacts from flow or respiration. One important
example is the reduction of motion artifacts in a diffusion-
weighted MRI (6,7). Furthermore, the aliasing artifacts from
radial under-sampling usually appear as streaks, which
are visually less distracting than the wrap-around artifacts
obtained with cartesian under-sampling.

One of the disadvantages of PR is the increased scan
time involved if the Nyquist sampling criterion needs to
be satisfied. More specifically, the number of radial lines
N; required to satisfy the Nyquist criterion is given by (3):

Ni > mkmaxL, (1]

where L is the field-of-view (FOV), and kpax is the maxi-
mum k-space radius. Usually, the number of radial lines
acquired by PR is about 57% larger than the number of
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k-space lines acquired on a cartesian grid, which results in
the increased scan time (3). If streak aliasing artifacts can
be tolerated in an application, the scan time can be reduced
by using angular undersampling. One such undersampled
PR application is contrast-enhanced vascular imaging (8).
Because of the properties of PR, if the contrast enhanced
vessels are located at the center of the FOV, the undersam-
pling aliasing artifacts appear as streaks near the periphery
of the FOV and usually do not interfere with vessels located
at the center of FOV. Hence, this application of PR for
angiography has been a success (8).

Rather than tolerating the angular aliasing artifacts, how-
ever, the main goal of our research is to develop a novel
reconstruction algorithm with minimal angular aliasing.
The bases of such a novel algorithm are the following
two observations: (a) most medical imaging is sparse in
some sense, and (b) the under-sampled PR still provides
a meaningful low resolution image.

Recently, there has been great interest in super-resolution
MR image reconstruction techniques from highly under-
sampled k-space data, including k-t SPARSE (9,10), and
HYPR (11). The advantage of using the highly under-
sampled k-space data is fast acquisition, which improves
the temporal resolution. Mathematically, the reconstruc-
tion problem from sparse k-space samples is an ill-posed
inverse problem with infinitely many solutions; therefore,
some kind of regularization or constraint is necessary to
obtain a unique and stable reconstruction. Sparsity is a
very promising constraint for such ill-posed inverse prob-
lems, because sparse images are quite often encountered
in practise, and the sparsity constraint does not usually
sacrifice the image resolution. For example, in MR angio-
graphy problems, the support of the vascular structures
only assumes a small portion of the total field of view. Even
for other imaging applications, such as brain or cardiac
imaging, an image can be sparsified under some trans-
formation, such as wavelet transform or temporal Fourier
transform. Assuming a given image can be sparsified, the
recent theory of so-called “compressed sensing” (12,13)
in the signal processing community shows that perfect
reconstruction is possible even from samples markedly
smaller than the Nyquist sampling limit. Even for images
not completely sparse, the compressed sensing theory
tells us that significant features of images can be still
obtained. Furthermore, the basis pursuit, matching pur-
suit methods, or the convex L; optimization method can
be used to obtain sparse solutions (12,13). In MR imag-
ing, k-t SPARSE successively employed the compressed
sensing theory for cardiac imaging applications by trans-
forming the time varying image using a wavelet trans-
form along the spatial direction and a Fourier transform
along the temporal direction (9). The compressed sens-
ing concept has been also used for the MR angiography
problem (10).

The main contribution of this article is to demonstrate
that a new type of sparse reconstruction algorithm called
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the focal underdetermined system solver (FOCUSS) (14—
16) is suitable for projection reconstruction MR imaging.
FOCUSS was originally designed for electroencephalo-
gram (EEG) and magnetoencephalography (MEG) source
localization problems by obtaining sparse solutions from
successive quadratic optimization problems (14,15). More
specifically, FOCUSS starts from a low resolution estimate
of the sparse signal, which is pruned to a sparse signal
representation. The pruning process is implemented by
scaling the entries of the current solution by the function
of the solutions of previous iterations. Therefore, one of the
important requirements of FOCUSS is the existence of an
initial estimate with reasonably low resolution to provide
the necessary extra constraint to resolve the nonuniqueness
of the problem.

FOCUSS is a nice fit to the projection reconstruction
MRI in many aspects. First, in the MR imaging problem
from radial under-sampled data, the conventional back-
projection of the down-sampled data provides the neces-
sary low-resolution initial estimate, which is essential for
FOCUSS. This is because the oversampled center region
provides a low resolution, yet meaningful, image. Sec-
ond, FOCUSS incorporates the sparseness of the image
as a soft-constraint, whereas the conventional basis pur-
suit or orthogonal matching pursuit imposes the constraint
as a hard constraint. The hard sparseness constraint may
be unsuitable for medical imaging applications, since the
abrupt changes of the image values depending on the sup-
port introduce visually annoying high frequency artifacts.
The reconstruction image using FOCUSS, however, does
not have these characteristics, since the nonzero image val-
ues are gradually suppressed. Third, even if the image is not
sparse in the strict sense, FOCUSS tends to suppress the
reconstruction noise because aliasing artifacts and noises
are usually isolated; thus, they can be easily removed dur-
ing the pruning process of FOCUSS. Finally, FOCUSS can
be very easily implemented in a computationally efficient
manner using successive quadratic optimization. This is
a quite significant advantage over computationally expen-
sive sparse optimization algorithms, such as basis pursuit
or matching pursuit (12,13). Indeed, because of the spe-
cial structure of the projection reconstruction MRI, the
FOCUSS algorithm can be efficiently implemented using
an iterative application of back-projection and reprojec-
tion. Hence, the fast projection/back-projection algorithm
(17,18) can be used to minimize the computational bur-
den. Because of these advantages of FOCUSS in projection
reconstruction MRI, we term the new algorithm the projec-
tion reconstruction focal underdetermined system solver
(PR-FOCUSS). Experimental results using synthetic and
in vivo data demonstrate very quick convergence of our
algorithm to accurate solutions even from highly sparse
k-space samples.

SPARSE RECONSTRUCTION USING FOCUSS
Notation

Throughout the article, the matrix is represented by a bold
capital letter (e.g., W), whereas a bold lowercase letter (e.g.,
x) represents the vector. The (i, j)-th elements of W are rep-
resented by W;;, and the ith elements of x are x;. In the Ith
FOCUSS iteration, the updates of a vector x and a matrix
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W are represented by x; and Wy, respectively. Then, the ith
elements of the vector x; are represented by x;;. As will
be shown later, within the Ith FOCUSS step, there exists
conjugate gradient steps. The nth update for x; from the

conjugate gradient iteration is then represented by xgn).

Review of FOCUSS

FOCUSS is an algorithm designed to obtain sparse solu-
tions to underdetermined linear inverse problem given by

y = AX, [2]

where y € CK,x € CN, Ais a K x N matrix, and N » K
(15,16). There exist infinitely many solutions to Eq. [2], and
the minimum norm solution is the most widely used for
Eq. [2]. This minimum norm solution is uniquely computed
by solving the following minimization problem:

min ||x||§, s.t. Ax =y, [3]

where || - ||» denotes the L, norm. Then, the solution can be
represented in a closed form:

x = Ay, (4]

where At = A#(AAH)~! denotes the pseudo-inverse. The
minimum norm solution has the tendency to spread the
energy rather than obtaining sparse solution (15,16).

To derive FOCUSS, let us consider the following opti-
mization problem:

find x = Wq, (5]

where x is the unknown image, W is a weighting matrix,
and q is computed from the following constrained mini-
mization problem:

min [|q||3, s.t. AWq =y. [6]

Note the difference between the minimization problems
of Egs. [3] and [6]. The difference is the inclusion of the
weighting matrix W right after the A matrix. Now, the
optimal solution is given by

q=(AW)'y,
x = Wq = W(AW)'y. (7]

This is the basic starting point for the FOCUSS algorithm.
The novelty of the FOCUSS algorithm comes from the fact
that the weighting matrix W can be continuously updated
using the previous solution. More specifically, suppose the
(I — 1)-th iteration of the image estimate is given by

T
X1 = [Xj_1;1, X1—1;25 - - - X1-1;N] -

Then, the Ith iteration of FOCUSS is composed of the
following steps:

X111 1P 0 e 0
0 [Xj_12/P - 0
Step1: W; = . . . . , [8]
0 0 |X1—1;N|‘D
Step 2: q = (AW))'y, [9]
Step 3: x; = Wq;, [10]
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where the parameter p is given by 1/2 < p < 1 (16). Afterx;
is obtained in Step 3, the weighting matrix is recalculated,
and FOCUSS iteration, Step 1 to Step 3, is reapplied.

To understand why FOCUSS provides a sparse solution,
consider the Ith FOCUSS update. Using q; = W; 'x; with
Egs. [5] and [6], the Ith FOCUSS update can be written by

min |[W;'x[|3, st Ax=y. [11]

Suppose we set p = 0.5 for the W; update. Then, we have
the following asymptotic relation:

W )12 = xT (W) Wi 1x

|x7-117? 0 0
- 0 |Xj_1.217" - 0
=X X
0 0 |X]7‘1;N|71

N
~ > X1l
=1

~ x|l as!l— oo, [12]
where the superscript  denotes the Hermitian transpose,
and ~ implies the asymptotic equality as I — oo. This
implies that FOCUSS is asymptotically equivalent to the L,
minimization problem. Since it is well known that L; min-
imization provides a sparse solution (12,13), we can expect
that FOCUSS solution will be sparse.! The convergence of
FOCUSS to a sparse solution was shown rigorously in a
previous paper (15).

Note that FOCUSS starts by finding a low-resolution esti-
mate of the sparse signal to initialize the W; matrix at the
beginning of an iteration, and this solution is pruned to a
sparse signal representation. The pruning process is imple-
mented by scaling the entries of the current solution by
those of the solutions of previous iterations (15). Therefore,
a good initial estimate is an important factor to guaran-
tee the performance of the algorithm. As will be shown
in the next section, projection reconstruction MR imag-
ing provides a good initial estimate for FOCUSS. There-
fore, we chose FOCUSS for an undersampled projection
reconstruction MRI.

FOCUSS FOR PROJECTION RECONSTRUCTION

Let f(r),r = (x,y) € %2 denote the unknown proton den-
sity in 2D. Then, the k-space measurement from radial
trajectory is given by

¥ = y(k,0) = / f(e)e T dr, [13]
where k = (kcos9, ksinf) denotes the coordinate vec-
tor in k-space, in which k-space samples are acquired
according to the polar coordinate (k,6), and r = (x,y)

is the coordinate vector in spatial domain. Since the fre-
quency encoding along the radial direction can be done

"Even for P > 0.5, FOCUSS still guarantees a sparse solution (15).
However, throughout the article we use P = 0.5 for simplicity.

Ye et al.

simultaneously within a single echo, the resolution along
the radial direction is assumed as the maximum. Hence,
the total acquisition time is limited by the number of angu-
lar samples. At this point, the reconstruction problem is to
obtain f(r) from the k-space samples using Eq. [13]. Note
that in radial acquisition, k-space samples are denser at
the k-space center. The densely sampled k-space samples
provide an image with acceptably low resolution, which is
essential for the convergence of FOCUSS.

Recall that the well-known Fourier slice theory (19) tells
us that Eq. [13] is indeed the Fourier transform of the
following Radon transform with respect to s:

y(s,0) = /f[x,y)ﬁ(x cosf + y sin 6 — s)dxdy, [14]

where y(s,0) is obtained using the inverse Fourier trans-
form of the k-space samples y(k,0) along the radial
direction. Now the reconstruction of f(x,y) can be done
using either the inverse Radon transform or filtered back-
projection.

For the specific implementation of FOCUSS for pro-
jection reconstruction, we prefer a Radon space based
reconstruction method to the k-space based Fourier grid-
ding method. Historically, Fourier gridding methods using
Eq. [13] have been more often used, since the carte-
sian grid allows the use of fast Fourier transform and
fast inverse Fourier transform. However, gridding can
add aliasing artifacts from the rectilinear resampling.
Because of the recent advances of fast projection and back-
projection algorithms (17,18), projection/backprojection
using Eq. [14] is now becoming favorable over the grid-
ding approaches. Hence, we will use the projection/
backprojection approach.

For a computer implementation of projection/backprojec-
tion, the image domain should first be discretized into N
pixels. Then, we may represent f(x,y) as a sum of N basis
functions {w;(x, y)}¥, with weighting f;,i =1,...,N:

N
fy) =) fiwilx,y), [15]
i=1

where w;(x, y) is 1 inside of the ith pixel and zero outside.
The sinogram y(s, ) in Eq. [14] is also discretized, and the
jth projection ray can be represented by y; = y(s;,6;). Then,
the Radon transform relation in Eq. [14] can be written as

y = Ax, [16]

where y and x may be represented by
y=b » yid"eck [17]
x=1[fi f " ecy (18]

and A is the K x N sparse matrix whose (j, 1) elements can
be calculated by

Aji= / w;(x,y)8(x cos6; + y sinb; — s;)dxdy. [19]

Now, we are interested in reconstructing image x from very
sparse, angularly sampled Radon space data, y. To reduce
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Table 1
Pseudo-code Implementation of PR-FOCUSS Using Fletcher-Reeves Conjugate Gradient Inner Loop
1. Initialize xo = Afy.
2. Foreach /=1,2..., do the following:
(a) Update W, using Eq. [8].
(b) Initialization for CG loop:
q” =0, g@=-w/Afy, dO=_g0.
(c) Repeat the following CG steps until converged.
(i) Compute the step size:
gMHdm
4T T W AH AW, A
(i) g™V = q\ + apd™.
(i) g+ = ~W/AH (y - AW,q{"""). If g™+ = O, stop.
(iv) Compute the following parameter:
g[n+1)Hg(n+1]
P = gMHgn)
(v) drt1) = gt 1 g d(",
(vi) Increase n and go to step (i).
(d) x; = Wiq)™"".
(e) If converged stop. Otherwise, increase / and go to (a).
both angular sampling and angular aliasing artifacts, while Backprojection: A (y — AWqunH)), [25]
maintaining spatial resolution, we employ FOCUSS, as
described in Egs. [8]-[10]. Weighting:  — WA (y — AW,q|"V). [26]

Note that the main computational burden for FOCUSS
comes from the following pseudo-inverse calculation:

q = (AW)'y = WHAP (AW, Wi APy, [20]

because of the computationally expensive inversion of the
K x K matrix AWIWIH AH  Here, the matrix inversion can be
avoided by using the conjugate gradient (CG) method (20).
The overall pseudo-code implementation of FOCUSS for
projection reconstruction using CG is given in Table 1. As
shown in Table 1, the main building block for CG is the
calculation of the gradient:

gt = —wWHAH(y — AW q\"™). [21]

Note that, since the back-projection operation is adjoint of
the projection operator (19), Eq. [21] can be decomposed
into the following successive steps:

Weighting: WIqEHH], [22]
Projection: AW;q"", [23]
Substraction: y — AWIqEHH), [24]

The main computational burden comes from the pro-
jection operation, Eq. [23], and back-projection operation,
Eq. [25]. However, the recent advances of fast projec-
tion and backprojection algorithms (17,18) may relieve the
computational burden of these steps significantly.

FIG. 1.

Original Shepp-Logan phantom image.



768

i

EXPERIMENTAL RESULTS
Synthetic Data

To analyze the efficiency of our algorithm (PR-FOCUSS) in
a controlled environment, extensive computer simulations
were performed using the popular Shepp-Logan phantom,
as shown in Fig. 1. For a fair evaluation of the performance
of PR-FOCUSS, we also implemented three standard recon-
struction methods: (a) filtered back-projection with linear
interpolation and a Ram-Lak filter (LIN-FBP), (b) filtered
back-projection with spline interpolation with a Ram-Lak

FIG. 3. Reconstruction results from 90
views using (a) the filtered back projection
algorithm (linear interpolation, Ram-Lak fil-
ter), (b) the filtered back projection algo-
rithm (spline interpolation, Ram-Lak filter),
(c) the conjugate gradient method, and (d)
PR-FOCUSS.

I | I |

a b c

Ye et al.

FIG. 2. Sinogram data from
Shepp-Logan phantom. Projec-
tion data from (a) 180 views, (b) 90
views, and (c) 45 views, respec-
tively.

filter (SPLINE-FBP), and (c) an iterative reconstruction
method using the conjugate gradient method (CG-ALONE).

Recall that in the discrete implementation of back-
projection, the ray passes through the center of the pixel
to the detector cells; hence, the contribution of the detec-
tor measurements are calculated based on the interpola-
tion from the adjacent detector measurements (19). Here,
LIN-FBP uses linear interpolation, whereas SPLINE-FBP
uses spline based interpolation. The reason for including
SPLINE-FBP is to check whether higher order interpolation
might improve the reconstruction quality.
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FIG. 4. Reconstruction results from 45
views using (a) the filtered back projection
algorithm (linear interpolation, Ram-Lak fil- &
ter), (b) the filtered back projection algo-
rithm (spline interpolation, Ram-Lak filter),
(c) the conjugate gradient method, and (d)
PR-FOCUSS.
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H FIG. 5. (a) Position for the cutview inspec-
| tion, and (b) intensity profile along the

| cutview of the original image. [Color figure
1 can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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The CG-ALONE method is an iterative implementation
to obtain the minimum norm solution by minimizing the
constrained minimization problem in Eq. [3]. Since the
conjugate gradient method is known to provide stable
reconstruction and has been employed in projection recon-
struction MRI with multiple coils (21), we want to know
whether CG-ALONE can eliminate the undersampling arti-
facts. Note that the main difference between CG-ALONE
and PR-FOCUSS is that the weighting matrix W; is not
updated in CG-ALONE. Other than that, the two algorithms
are very similar, and PR-FOCUSS also employs the CG iter-
ation for each updated Wj. For a fair comparison between
CG-ALONE and PR-FOCUSS, 100 iterations were used in
CG-ALONE, whereas PR-FOCUSS updated W; 20 times,

with 5 CG inner iterations for each updated W;. Hence, the
total number of iterations in PR-FOCUSS was 20 x 5 = 100,
which is identical to that of CG-ALONE. The reason for
applying so many iterations was to show that we are not
artificially limiting the number of PR-FOCUSS iterations;
rather, we want to demonstrate that the reconstruction
error continues to decrease for additional iterations.? All
the standard algorithms, as well as PR-FOCUSS, were
implemented using MATLAB (Mathworks, Natick, MA).

2Usually, however, a much smaller number of FOCUSS iterations was
sufficient for most of the simulation environments.
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(a) (b)

(e) (f)
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(&) (h)

FIG.6. Top: Intensity profile along the cutview for an image reconstructed from 90 views using (a) the filtered back projection algorithm (linear
interpolation, Ram-Lak filter), (b) the filtered back projection algorithm (spline interpolation, Ram-Lak filter), (¢) the conjugate gradient method,
and (d) PR-FOCUSS. Bottom: Intensity profile along the cutview for image reconstructed from 45 views using (e) the filtered back projection
algorithm (linear interpolation, Ram-Lak filter), (f) the filtered back projection algorithm (spline interpolation, Ram-Lak filter), (g) the conjugate
gradient method, and (h) PR-FOCUSS. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

In this simulation, we collected data from 0 to 179
degrees, which is similar to the half-scan in X-ray com-
puted tomography (X-ray CT). Full angle sinogram data
with 180 projection views were generated from the phan-
tom using the Radon transform, as shown in Fig. 2a, and an
angular down-sampling operation was performed to obtain
90 projection views and 45 projection views, as shown in
Figs. 2b and 2c, respectively.

Figures 3a—3d show the reconstruction results from
90 views using LIN-FBP, SPLINE-FBP, CG-ALONE, and
the proposed PR-FOCUSS, respectively. The image scale
window is modified to saturate the skull so that the
artifacts are more obvious. The modified image scale win-
dow is consistent for all four reconstructions. We can
observe that the view-related aliasing artifacts mostly
disappeared in the PR-FOCUSS reconstruction results,

il PaL
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| |
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SPLNEFEP PR FJ.;LEE T\ = PR if =S FIG. 7. Top: MSE error plots for (a) inside
U= % 3 W © W ® w = I =t = and (b) outside of the objects in the recon-
beestion Eiition struction images from 90 views. Bottom:
() (b] MSE plots for (c) inside and (d) outside
] o of the objects in the reconstructed images
' [ from 45 views. [Color figure can be viewed
g J af in the online issue, which is available at
Sl E-FEF . . .
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while the sharpness of the original image was maintained.
Figures 4a—4d show the reconstruction results from 45
views using LIN-FBP, SPLINE-FBP, CG-ALONE, and the
proposed PR-FOCUSS, respectively. Again, the image scale
is consistently modified to saturate the skull so that the
artifacts are more obvious. Most of the aliasing artifacts
observed in the conventional LIN-FBP, SPLINE-FBP, and
CG-ALONE were suppressed in the reconstruction results
by PR-FOCUSS. As the number of views decreases, many
severe view aliasing artifacts and much resolution loss
were observed in the reconstruction results by LIN-FBP,
SPLINE-FBP, and CG-ALONE. However, only slight degra-
dation of image quality was observed in the PR-FOCUSS
results.

To demonstrate the improved performance of the pro-
posed PR-FOCUSS more clearly, the intensity profiles along
a cutview of images from 90 views and 45 views are plot-
ted. Figures 5a and 5b show the position of the cutview and
the intensity profile, respectively. Figures 6a—6h clearly
show that PR-FOCUSS retains the contrast of the orig-
inal phantom and removes the aliasing artifacts in the
background.

To quantify the quality improvement of PR-FOCUSS,
we have calculated the mean square errors (MSE) and
have plotted them according to the iteration number (see
Figs. 7a—7d). The MSE of the Ith PR-FOCUSS reconstruc-
tion x; is defined by

2
X — X
MSE — ” 1 orzg”z’ [27]
IXorgI5
where | - |, denotes the L; norm and X is the original

image. Since one iteration of PR-FOCUSS corresponds to
five CG-ALONE iterations, for a fair comparison, we also
consider five CG iterations in a CG-ALONE algorithm as
one CG-ALONE iteration. Therefore, even though the max-
imum number of iterations in Figs. 7a—7d reads 20, it
corresponds to 100 CG iterations. The MSE of the Ith CG-
ALONE iteration is also calculated similar to Eq. [27].
Since the LIN-FBP and SPLINE-FBP are not iterative algo-
rithms, the MSE is consistent regardless of iteration num-
ber. Figures 7a and 7c show that the MSE of the foreground
objects reconstructed by PR-FOCUSS for both 90 and 45
views is smallest among all the methods and is contin-
uously reduced with each iteration. Also, note that the
MSE of CG-ALONE is saturated and is not improved with
further iterations. A similar trend can be observed in the
background region, as shown in Figs. 7b and 7d. The
MSE of PR-FOCUSS is significantly lower than those of
the other methods, and it nearly reaches zero as iterations
continue.

In Vivo Experiments

To evaluate the practical usefulness of PR-FOCUSS, we
apply the PR-FOCUSS algorithm to in vivo brain data. In
this work, two healthy volunteers participated. Informed
consent was obtained from each volunteer. In vivo brain
data were acquired with the radial spin-echo sequence
using a 3.0T MRI system manufactured by ISOL tech-
nology of Korea. A birdcage RF head coil was used for
both the RF pulse transmission and the signal detection.

771

FIG. 8. Reconstruction results from a half-scan with uniform angu-
lar sampling between 0° — 180°. 1st row: Reference reconstruction
from 180 views. 2nd row: Reconstruction results from 90 views
using LIN-FBP. 3rd row: Reconstruction results from 90 views using
CG-ALONE. 4th row: Reconstruction results from 90 views using
PR-FOCUSS.

The images were acquired with a slice thickness of 4 mm
using TR/TE=2000/90 ms. 256 points per projection were
acquired with an FOV of 220 x 220 mm? to produce images
with 256 x 256 resolution. Twenty slices were acquired with
a slice thickness of 4 mm. Three separate scans were per-
formed for each subject to acquire 180 views, 90 views,
and 45 views, respectively. To show the robustness of PR-
FOCUSS, we have applied PR-FOCUSS for different slices
ofabrain. In addition, for fair comparison with the standard
methods, the reconstruction results from the conventional



FIG. 9. Reconstruction results from half-scan with uniform angular
sampling between 0°—180°. 1st row: Reference reconstruction from
180 views. 2nd row: Reconstruction results from 45 views using LIN-
FBP. 3rd row: Reconstruction results from 45 views using CG-ALONE.
4th row: Reconstruction results from 45 views using PR-FOCUSS.

back projection (LIN-FBP)? and conjugate gradient method
(CG-ALONE) are also generated. Furthermore, we gener-
ated the reconstruction results using the full 180 views
as references. Since the 180 views were obtained from
a separate experiment, there might be registration errors
in the reconstructions; however, they still provide useful
ground-truth images.

3Since LIN-FBP performs similarly to SPLINE-FBP, as shown in Fig. 7,
we have omitted the results by SPLINE-FBP to save space.

Ye et al.

Figure 8 shows the reconstruction results using various
algorithms for the 90 view projection data. The second,
the third, and the fourth rows of Fig. 8 correspond to
reconstructed images using LIN-FBP, CG-ALONE, and PR-
FOCUSS, respectively. PR-FOCUSS results are superior to
those of the other methods. Furthermore, the PR-FOCUSS
results are comparable to the reconstruction from the full
180 view projections shown in the first row of Fig. 8.
We also compared our algorithm with the other methods
for the case of 45 view projections (see Fig. 9). Again,

FIG. 10. Reconstruction results from full-scan with uniform angular
sampling between 0°-360°. 1st row: Reference reconstruction from
190 views. 2nd row: Reconstruction results from 103 views using
LIN-FBP. 3rd row: Reconstruction results from 103 views using CG-
ALONE. 4th row: Reconstruction results from 103 views using PR-
FOCUSS.
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FIG. 11.
sampling between 0°-360°. 1st row: Reference reconstruction from
190 views. 2nd row: Reconstruction results from 51 views using LIN-
FBP. 3rd row: Reconstruction results from 51 views using CG-ALONE.
4th row: Reconstruction results from 51 views using PR-FOCUSS.

Reconstruction results from full-scan with uniform angular

the reconstructed images using PR-FOCUSS show quality
improvements over the conventional methods.

Note that the horizontal streaks from the top and the
bottom of all the scans in Figs. 8 and 9 are due to a tim-
ing error. A delay caused the 0 and 179 degree projections
to be shifted, which produced these streaks.* To eliminate

4The authors would like to thank the anonymous reviewer for bring-
ing this issue to our attention. This paragraph was quoted from the
reviewer's comment.
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these artifacts, we performed another scan with uniformly
sampled views between 0° and 360°, which corresponded
to a full-scan in X-ray CT. More specifically, three sepa-
rate scans were performed for each subject to acquire 190
views, 103 views, and 51 views, respectively. Hence, the
corresponding view step sizes were 360/190°, 360/103°,
and 360/51°, respectively. The reconstruction results from
the reference scan using 190 views and the view downsam-
pled reconstruction results using LIN-FBP, CG-ALONE, and
PR-FOCUSS with 103 views are illustrated in the first, the
second, the third and the fourth rows of Fig. 10, respec-
tively. PR-FOCUSS reconstruction performed better than
the conventional methods, especially at the background,
and the object reconstruction image quality was compara-
ble for all three methods. Similar results can be observed
from reconstruction results from 51 views, as shown in
Fig. 11. The PR-FOCUSS reconstructions are consistently
better than the conventional algorithms.

DISCUSSION
Sparsity

The basis for our algorithm is the sparsity of image support.
Formally, the sparsity is defined by the number of nonzero
pixels in an image domain (12,13). Then, one may wonder
(a) when are images not sparse enough for our algorithm to
work and (b) are there any graceful degradations or severe
artifacts when the images are not sparse?

The main theoretical framework to answer these ques-
tions is the recent theory of compressed sensing (12,13) in
the signal processing community. The compressed sensing
theory tells us that the perfect reconstruction of x is pos-
sible from the noiseless k-space measurements markedly
smaller than the Nyquist sampling limit as long as the
nonzero support of x is sparse and the k-space samples
are obtained in random or radial sampling patterns (12,13).
More specifically, suppose the N dimensional vector x is
nonzero at the unknown M(« N) locations, and the dimen-
sion of the k-space measurement vector y is K. Then, it is
possible to design K = O(M log N) number of k-space mea-
surements to obtain the perfect reconstruction of x with
overwhelming probability.> Second, if K = O(M log® N)
discrete measurements in k-space are noisy and their mag-
nitudes are upper-bounded by the input noise power ¢, then
with overwhelming probability the reconstruction error is
also upper bounded by € multiplied with a finite constant.
This implies that, unlike the common belief that the ill-
posed problem is unstable, the sparsity of the unknown
image makes the reconstruction process stable. Third, if
the signal x is compressible in the sense that the reordered
entries x(,) decay like a power-law,

X! < C-n~ "4,

for a positive constant C and 0 < g < 1, where x(;;) denotes
the nth largest x values in a discrete domain, then with

5The O() denotes the “big O” notation to describe an asymptotic
upper bound.
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FIG. 12. MSE plots of LIN-FBP and PR-
FOCUSS with respect to the percentage of
non-zero support. MSE plots from (a) 90
views and (b) 45 views.
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overwhelming probability one can reconstruct the signal x
from K measurements with the reconstruction error
Ix = %512 < G - (K/log N)~(/a-1/2), [28]
for some finite constant C;, where %X denotes the estimate
ofx from K measurements (12,13). This is an especially use-
ful result for MR imaging since, in many cases, the images
are not sparse, but they are compressible in the sense that
the magnitude of the x decays rapidly. Hence, Eq. [28] guar-
antees the graceful degradation of the reconstruction image
quality even if the sparsity assumption breaks down.
Perhaps the most important implication of the com-
pressed sensing theory is that the optimal sparse solution
satisfying the above-mentioned properties can be obtained
by solving the L; minimization (12,13). More specifically,
the optimal MR imaging problem from the compressed
sensing perspective can be stated as follows:

minimize ||x]|4,

subject to y = Ax, [29]
where || -|; denotes the L,. Since our cost function, Eq. [11],
is asymptotically equivalent to Eq. [29], we can expect
that our algorithm is asymptotically optimal from a com-
pressed sensing perspective. Thus, it inherits all of the
above-mentioned desirable properties of the compressed
sensing.

To demonstrate the graceful degradation of our algorithm
when the sparsity assumption breaks down, we have gen-
erated a series of Shepp-Logan phantoms of varying object
size with respect to the fixed image size of 256 x 256.
The MSE errors of our algorithm from 90 views and 45
views with respect to the percentage of nonzero support
is illustrated in Figs. 12a and 12b, respectively. The lin-
ear increase of the MSE of our algorithm with respect to
the nonzero supports implies the graceful degradation of
image quality as the support size increases. However, for
the case of LIN-FBP, the MSE increases abruptly and it is
soon saturated.

Noisy Measurement

The basic assumption of the derivation of our algorithm is
that the signal to noise ratio (SNR) of a k-space measure-
ment is reasonably high, since the forward model is given
by Eq. [2]. This is typical of a modern MRI scanner due to

the advance of MR hardware. However, depending on the
acquisition protocols, there might be cases where the SNR
is not sufficient and the k-space data includes significant
noise. In these cases, the forward model given in Eq. [2]
should be modified as follows:

y =Ax+n, [30]

where n denotes the noise. Therefore, the equality con-
straint in Eq. [6] should be changed to the following
inequality constraint:

min ||q[l2, s.t. [y — AWqlls <e, [31]

where W, denotes the Ith weighting matrix, and e is the
noise level. The constrained optimization problem can
be converted into an unconstrained optimization problem
using the Lagrangian multiplier (20):

Clg) = lly — AWq|I3 + Alqll3, [32]

where A denotes the appropriate Lagrangian parameter.
Finally, the optimal Ith update is then given by

X = qu

— @,A"(A@A" 1)y, [33]
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FIG.13. MSE plots of PR-FOCUSS from noisy 45 views with respect
to the regularization parameter A.
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FIG. 14. Reconstruction results from noisy
45 views using (a) LIN-FBP and (b) regular-
ized PR-FOCUSS.

where ®; = W;W}!. To quantify the performance of our
algorithm under a noisy scenario, we generate the noisy
k-space measurement from Shepp-Logan phantoms by
adding zero mean Gaussian noise to the sinogram data.
Figure 13 illustrates the MSE error of our algorithm with
different A values. The original algorithm with A = 0
diverges after several iterations, since it assumes noise free
measurements. By increasing the A values, the algorithm
becomes more stable, and the solution becomes smoother,
as shown in Fig. 14.

CONCLUSION

We proposed the projection reconstruction FOCUSS (PR-
FOCUSS) algorithm to obtain a high resolution reconstruc-
tion from angularly undersampled radial k-space data. The
FOCUSS algorithm was found to be suitable for projection
reconstruction MRI, because such medical images are usu-
ally sparse, and the center area of the undersampled PR
k-space samples still provides a low resolution, yet mean-
ingful, image essential for the success of FOCUSS. A con-
jugate gradient method using projection/backprojection
operation was developed to implement each step of PR-
FOCUSS, whose computational burden could be signifi-
cantly reduced by using the fast projection/back projection
algorithms. Simulation results, as well as a real in vivo
brain data set from a 3.0T MRI scanner, demonstrated that
the proposed algorithm suppresses the angular aliasing
artifacts with minimal resolution loss.
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