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Abstract

Methods for measuring deformation and motion of the human heart in-vivo
are crucial in the assessment of cardiac function. Applications ranging from
basic physiological research, through early detection of disease to follow-up
studies, all benefit from improved methods of measuring the dynamics of
the heart. This thesis presents new methods for acquisition, reconstruction
and visualization of cardiac motion and deformation, based on magnetic
resonance imaging.

Local heart wall deformation can be quantified in a strain rate ten-
sor field. This tensor field describes the local deformation excluding rigid
body translation and rotation. The drawback of studying this tensor-valued
quantity, as opposed to a velocity vector field, is the high dimensionality
of the tensor. The problem of visualizing the tensor field is approached by
combining a local visualization that displays all degrees of freedom for a
single tensor with an overview visualization using a scalar field representa-
tion of the complete tensor field. The scalar field is obtained by iterated
adaptive filtering of a noise field.

Several methods for synchronizing the magnetic resonance imaging ac-
quisition to the heart beat have previously been used to resolve individual
heart phases from multiple cardiac cycles. In the present work, one of these
techniques is extended to resolve two temporal dimensions simultaneously,
the cardiac cycle and the respiratory cycle. This is combined with volu-
metric imaging to produce a five-dimensional data set. Furthermore, the
acquisition order is optimized in order to reduce eddy current artifacts.

The five-dimensional acquisition either requires very long scan times or
can only provide low spatiotemporal resolution. A method that exploits
the variation in temporal bandwidth over the imaging volume, k-t BLAST,
is described and extended to two simultaneous temporal dimensions. The
new method, k-t2 BLAST, allows simultaneous reduction of scan time and
improvement of spatial resolution.
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Chapter 1

Introduction

Cardiovascular disease is the leading cause of death in the western world.
In Sweden, diseases of the circulatory system was the cause of death of
45% of the men and 44% of the women who died in 2003 [1]. Of these
deaths, ischemic heart disease was the largest group, accounting for 23%
of male deaths and 18% of female deaths. Decades of research has been
conducted to understand the function of the healthy heart, the changes
associated with disease, and the causes thereof. Functional studies of the
heart wall are the cornerstone for the assessment and follow-up of a large
range of cardiac diseases. Cardiac motion and deformation are fundamental
properties that are of interest to comprehend the impact of diseases on
cardiac function. Quantification of motion and deformation would lead to
less subjective assessment and improve our ability to compare the effect of
different treatment strategies.

The aim of this thesis was to develop methods for measuring deforma-
tion and motion of the heart in-vivo with the use of magnetic resonance
imaging (MRI).

To fulfill this goal, the following approaches were investigated:

• Visualization of the local heart wall deformation. This involves com-
puting a strain rate tensor field from a volumetric velocity measure-
ment of the heart. The strain rate tensor is insensitive to regional
translation but instead describes the rate of local lengthening or short-
ening. The tensor field is visualized using a combination of traditional
glyph rendering of a single tensor with tensor-guided adaptive filter-
ing of noise fields for overview visualization.

• Acquisition of volumetric images resolved over both cardiac and respi-
ratory cycles simultaneously. This produces a five-dimensional data
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set, allowing for example measurement of interventricular coupling
during the respiratory cycle. This is accomplished by combining a
fast MRI pulse sequence with a triggering method extended to two si-
multaneous temporal dimensions. The acquisition order is optimized
to minimize artifacts in the images.

• Acquisition time reduction by sampling data sparsely and exploiting
spatiotemporal correlations during reconstruction. With this tech-
nique, the long acquisition time for five-dimensional imaging can be
cut in half while spatial resolution is simultaneously quadrupled. The
sparse sampling enables sharing temporal bandwidth between static
and dynamic parts of the imaging volume, allowing for a significantly
more efficient use of scan time.

1.1 Outline of the thesis

This thesis is organized as follows. In Chapter 2, a brief overview of motion
of the heart during the cardiac and respiratory cycles is provided. Further-
more, the strain rate tensor, describing the local heart wall deformation, is
introduced. Principles of cardiac MRI and temporally resolving sampling
procedures in particular are presented in Chapter 3. In Chapter 4, ways to
shorten acquisition time are discussed, mainly focused on the k-t BLAST
method. Visualization of the heart wall deformation strain rate tensor field
is described in Chapter 5. Chapter 6 contains short summaries of the papers
that are part of this thesis, and Chapter 7 contains discussion.
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1.2 Glossary of terms and abbreviations

Aliasing The replication of a signal caused by periodic sam-
pling. The aliased signal appears at different posi-
tions in the corresponding transform space, e.g. at
different spatial positions, spatial frequencies, tem-
poral positions or temporal frequencies.

ECG Electrocardiogram
FOV Field of view
In-vivo Within a living organism, as opposed to in-vitro (in

the laboratory).
k -space The spatial frequency domain of the object being

imaged in magnetic resonance imaging.
k-t BLAST k-t Broad-use Linear Acquisition Speed-up Tech-

nique. A method to reduce acquisition time by
sparse sampling in k-t space, with subsequent alias
suppression during reconstruction.

LIC Line integral convolution, a vector field visualization
technique.

M-mode Motion mode. Display of dynamics by presenting the
temporal dimension on a spatial axis, widely used in
ultrasound.

MRI Magnetic resonance imaging
Myocardium Heart muscle
SSFP Steady State Free Precession. An MRI pulse se-

quence widely used for cardiac imaging.
TRIADS Time-Resolved Imaging with Automatic Data Seg-

mentation. A method for resolving motion with
automatic division of the cycle into multiple time
frames.

Voxel Volume element
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Chapter 2

Cardiac motion

There are several types, or scales, of cardiac motion that are meaningful to
study. Deformation or strain in the cardiac muscle can give useful infor-
mation about the local function of the muscle. Wall thickening and motion
can also give important regional information. The interaction between the
left and right ventricles is a more global effect that is influenced by pressure
differences external to the heart, such as caused by respiration.

2.1 The cardiac cycle

The heart is the organ responsible for pumping blood throughout the body.
It is divided into four chambers; the left and right atria and the left and
right ventricles, as shown in Figure 2.1. The pump function of the heart is
periodic, and the cardiac cycle is divided into two main phases, diastole and
systole. In the diastolic phase, the left and right ventricles are filled with
blood from the atria through the mitral and tricuspid valves. In the systolic
phase, the ventricles contract and blood is ejected through the aortic and
pulmonary valves to the aorta and the pulmonary artery.

Both the left and right sides of the heart beat approximately simulta-
neously. The two sides are connected in series with the systemic circuit
through the body and the pulmonary circuit through the lungs. Deoxy-
genated blood from the body is delivered to the right atrium. The blood
fills the right ventricle and is subsequently ejected through the pulmonary
artery and into the lungs, where it is oxygenated. Oxygenated blood is
delivered to the left atrium which then fills the left ventricle. The left ven-
tricle ejects the oxygenated blood through the aortic valve to the aorta,
which is connected to the rest of the body.

Common heart rates in healthy persons are 45–80 beats per minute.



6 Cardiac motion

a b
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Figure 2.1: Cardiac configuration in systole (a) and diastole (b) in a four-
chamber view. The arrows indicate the right ventricle (RV), right atrium
(RA), left ventricle (LV) and left atrium (LA).

The duration of the systolic phase usually varies very little with changing
heart rates, but the duration of the diastolic phase can vary substantially.
The thickness of the myocardium, the heart wall, of the left ventricle ranges
from around 10 mm at the end of diastole to 15 mm at the end of systole.
The right ventricular walls are significantly thinner, measuring 5.3 mm and
5.6 mm in end diastole and end systole, respectively. The outer contours
of the heart are surprisingly static during the cardiac cycle, as shown in
Figure 2.1. Substantial contribution to the volume changes is made by
shifting the atrio-ventricular plane in the apex to base direction with the
valves open during diastole and in the opposite direction with the valves
closed during systole [2].

What is commonly measured to assess cardiac motion is wall thickness
variations during systole and diastole. Synchrony of the different parts of
the ventricle can also be of interest, especially when studying effects of
myocardial ischemia and infarction [3].

2.2 The respiratory cycle

Cardiac motion is highly affected by respiration. The most dominant ef-
fect of respiration is the effect on heart position. During inspiration, the
diaphragm, a muscular interface between the abdominal and thoracic cavi-
ties, pulls downward, allowing the lungs to expand. The heart is attached to
the diaphragm, and is being pulled down during inspiration. Chest muscles
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also expand the chest cage, but to a much lesser extent than the expansion
caused by the diaphragm. This is illustrated in Figure 2.2.

ba

Figure 2.2: Cardiac positions in end expiration (a) and end inspiration (b).
The heart is shifted as the diaphragm is pulled down during inspiration.

Respiration also affects the pressure in the thorax. During inspiration,
pressure is lowered, to force air from the outside into the lungs. This
lowering of pressure reduces resistance in the vena cavas, the veins that
transport deoxygenated blood from the body into the right atrium. This in
turn increases filling of the right ventricle. At the same time, resistance in
the pulmonary system is increased, reducing the filling of the left ventricle.
During expiration, the pressure and the corresponding effects are reversed.

Typical respiratory rates vary between 10–20 cycles per minute. The
heart can be shifted as much as 12 mm. The effects of respiration is more
individual than that of the cardiac cycle.

2.2.1 Interventricular coupling

With changing pressures in the thorax, filling of the ventricles is affected
differently in the left and right sides. This results in changing volumes and
pressures between the ventricles. The interventricular septum regulates
this, shifting from one side to the other, in order to allow for volume or
pressure increase. This shift has been demonstrated by the method pre-
sented in Paper II and is shown in Figure 2.3. This is referred to as coupling
between the ventricles, and is important in several diseases. Some diseases
affect the pericardium surrounding the heart. A stiffer pericardium will ex-
aggerate the interventricular coupling. The ventricular coupling is present
even without any pericardium, but the effect is reduced [4]. Acute changes
in left ventricular function due to abrupt pressure overload of the right ven-
tricle (e.g., from pulmonary embolism) may be explained by interventricular
coupling. Long-term right ventricular volume overload, for example caused
by pulmonary valve insufficiency, can also be linked to the interventricular
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Figure 2.3: Septal motion over the cardiac cycle, presented in Paper II. The
wall positions of the inner right ventricular free wall (RFW), right side of the
septal wall (RS), left side of the septal wall (LS) and inner left ventricular
free wall (LWF) were traced through the respiratory cycle in an end diastolic
cardiac phase and shown on the left. Note that the septal wall moves towards
the right ventricle during expiration and towards the left ventricle during
inspiration. On the right, the computed right ventricular (RV) diameter and
left ventricular (LV) diameter show RV diameter decreasing during expiration
and increasing during inspiration. LV diameter demonstrates the opposite
behavior.

interdependence [5]. After open heart surgery, abnormal septal wall motion
is commonly observed [6]. The pathophysiological mechanism behind this
phenomenon is still disputed [7, 8].

2.3 Myocardial deformation

Local deformation of the myocardium is an important measure of its func-
tion. In the deformation estimate, translation is usually excluded, providing
only a measure of local lengthening and shortening. Damaged muscle tis-
sue is expected to produce less deformation, but it may still show large
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Figure 2.4: Illustration of the stress tensor acting on a point. The tensor
components are the stresses acting on different cut planes.

translation, due to pulling or pushing by neighboring healthy tissue [2].

Deformation and stress of a small volume is usually quantified using a
tensor. The general definition of a tensor involves a vector space V and its
dual. We will only be interested in the case where V is equipped with a
fixed scalar product, in which case the definition of a tensor is a multilinear
mapping from a number of vector spaces (V ) onto the real space (R). The
rank of a tensor is the number of arguments to the mapping. Scalars and
vectors are special cases of tensors, namely tensors with ranks 0 and 1,
respectively. We will consider the special case of tensors with rank 2. In
this case, the tensor is a bilinear mapping V × V → R. There is a one-to-
one correspondence of these tensors with mappings V → V . The tensor is
then naturally identified with this latter mapping.

Internal forces acting on a body can be described by the stress tensor.
One may think in terms of virtually cutting the body along a cut plane.
There is a force acting upon this cut plane, not necessarily perpendicular
to the plane, but generally having components of shear orthogonal to the
plane normal. This is illustrated in Figure 2.4. The stresses acting on three
orthogonal cut planes are shown on the surfaces of a box. The stresses can
be of arbitrary direction, as illustrated by the decomposition into three or-
thogonal components, one in the normal direction, representing the normal
stress, and two in the surface plane, representing shear stress. Since the
tensor is linear, the stress vectors need only to be obtained for three linearly
independent cut planes in order to determine the tensor completely.

The stress tensor is the linear mapping from the cut plane, which may be
represented by its normal vector, to the stress vector. The correspondence
with the mapping V ×V → R is then how much stress on a cut plane (first
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Figure 2.5: Eigen decomposition of the deformation of a square. The dotted
square is the original state and the stippled parallelogram is the deformed
state. The arrow on the square indicates shear force. The eigen decomposition
is illustrated to the right, with a large lengthening in one diagonal direction
and a somewhat smaller shortening in the other diagonal direction.

argument) there is along a probe vector (second argument).

Eigen decomposition is useful to aid interpretation, after which three (in
three dimensions) eigenvectors and corresponding eigenvalues are obtained.
The eigen decomposition is easiest considered when viewing the tensor as
the mapping V → V and representing the cut plane with its normal vector.
An eigenvector e to a mapping T is a vector which is mapped to itself
scaled by the eigenvalue λ, i.e. Te = λe with e ∈ V . In other words,
the eigenvector is the normal to a cut plane containing only normal stress
and no shear stress. An example of eigen decomposition is illustrated in
Figure 2.5

Common notation for the stress tensor components is a 3 × 3 matrix.
The Cauchy stress tensor is symmetric [9], so the matrix representation is
also symmetric. This means that the eigenvalues are real and the eigenvec-
tors are orthogonal.

With the stress tensor representing stress, force per unit area, there is
a corresponding strain tensor, representing local normalized deformation.
The strain tensor is related to the stress tensor through a constitutive
law. Strain reflects the shape change between two states, one state usu-
ally being some kind of reference state. This usually requires tracking of
points through time, not readily available with non-invasive methods such
as MRI. Tagging [10] or point tracking in velocity fields [11] can provide
data suitable for estimating myocardial strain, but limitations in spatial
resolution makes this approach difficult. Another way to characterize my-
ocardial deformation is to directly measure velocity by using phase contrast
MRI [12, 13]. From the measured velocity field, a spatial derivative, the



2.3 Myocardial deformation 11

Jacobian L, can be computed according to

L = ∇v =
dv

dx
∼









∂v1

∂x1

∂v1

∂x2

∂v1

∂x3

∂v2

∂x1

∂v2

∂x2

∂v2
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∂v3
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∂v3

∂x2

∂v3

∂x3









(2.1)

where ∼ denotes component representation, v ∼ (v1 v2 v3)
T is the velocity

vector and x ∼ (x1 x2 x3)
T are the spatial coordinates. The asymmetric

part of the Jacobian represents the rigid body rotation, while the symmetric
part is called the strain rate tensor. The Jacobian is symmetrized according
to

D =
1

2
(L + LT ) (2.2)

This tensor represents the instantaneous rate of change of strain and
has the physical unit s−1. The strain rate tensor is commonly used in fluid
studies, but may also be applied to studies of myocardial mechanics.

By studying the strain rate instead of the velocity, information is not
contaminated by translation possibly caused by adjacent muscle contraction
and relaxation. The price for this convenience is the necessity to study the
higher dimensional quantity of the tensor instead of the much simpler vector
valued velocity. This can be alleviated to some extent by performing eigen
decomposition of the tensor. The directions of the eigenvectors represent
the principal directions of lengthening or shortening. In the case of the
strain rate tensor, the eigenvalue then represents the rate of lengthening
(positive) or shortening (negative).
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Chapter 3

Cardiac Magnetic Resonance

Imaging

3.1 MRI Principles

MRI is an imaging modality that exploits the nuclear magnetic resonance
phenomenon, and is commonly used to produce images of the hydrogen
proton distribution in humans. Hydrogen is abundant in the human body
in the form of water molecules. MRI incorporates a strong external homo-
geneous magnetic field, which is used to align the spin distribution of the
hydrogen protons along the magnetic field direction. A rotating magnetic
field, usually referred to as radio frequency field, is then applied. Tuned
to the Larmor frequency of the spins, it is used to tip the spin distribution
away from the main magnetic field direction. This tipping is referred to
as excitation. After the excitation, the spin distribution undergoes a re-
laxation process, in which the distribution returns to be directed along the
main magnetic field. During this relaxation, the spins emit a signal that
is received using induction in coils. During signal reception, additional
spatially varying magnetic fields, referred to as the gradients, are applied
to encode the spatial position of the signal. The combination of gradient
waveforms and rotating magnetic field pulses is called a pulse sequence.

3.2 k-space

In MRI, data is naturally acquired in the Fourier domain, which is called
k -space. During readout of the MRI signal, which is usually seen as a
complex-valued signal, the spatially varying gradients encode a linear phase
on the imaging object. A gradient with strength G applied during a time
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period of t modulates the signal at a location x according to

eixγ
R

t

0
G(τ)dτ (3.1)

where γ is the gyromagnetic ratio of the hydrogen proton. Combined with
the fact that the signal is received from the whole object simultaneously
and the substitution k = γ

2π

∫ t

0 G(τ)dτ , the signal S follows a familiar
relationship, a Fourier transform:

S =

∫

X

ρ(x)eix2πkdx (3.2)

where the integral is performed over all spatial positions and ρ is the proton
density. This is a highly simplified model, disregarding relaxation, signal
decay and spatially varying coil sensitivity during reception, among other
things. Nevertheless, it illustrates the Fourier encoding and the role of
k -space as the spatial frequency domain.

The waveforms of the gradients are chosen in order to collect data from
different parts of k -space. The sequence of excitation and signal reception
during gradient application is repeated many times to collect signal from
sufficient parts of k -space to be able to reconstruct an image of the object.
Each repetition uses a different gradient strength for the spatial encoding,
to sample different points in k -space. The gradients can be applied in any
spatial direction, making it possible to acquire three-dimensional images. A
special case is the so-called “read-out” or “frequency encoding” direction.
The gradient in this direction is commonly applied constantly during the
signal reception, making a sweep through k -space in this direction while the
signal is sampled at a high sampling frequency. This is the measurement
of a k -space line, sometimes referred to as a k -space profile.

For objects with sharp details, high spatial frequencies need to be sam-
pled. This requires sampling of a larger area of k -space using several rep-
etitions and, consequently, a longer acquisition time. Since the spatial
frequency domain is being sampled instead of the normal spatial domain,
function domain and transform domain can be seen as reversed when com-
pared to conventional signal processing of temporally or spatially sampled
signals. Concepts of sampling density and Nyquist aliasing etc. show up
in new places. Since humans have a finite spatial extent, the sampled sig-
nal is guaranteed to be band limited. This translates into a requirement
for the sampling density in k -space to be able to reconstruct the object
without aliasing. If k -space is not sampled densely enough, spatial alias-
ing will occur. This is because regular sampling in the function domain
(k -space) will cause periodic repetition of the signal in the reciprocal trans-
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form domain (the spatial domain). The sampling can be represented as a
multiplication by the shah-function, III(k), defined as1

III(k) =

inf
∑

n=−inf

δ(k − n) (3.3)

with δ as the Dirac impulse. The convolution theorem states that multipli-
cation of two signals in the function domain corresponds to convolution of
their transforms in the transform domain. Since III(k) is self-reciprocal [14],
i.e. it is its own Fourier transform, this means that the transform of the
sampled signal is replicated, or aliased, periodically. Furthermore, the simi-
larity theorem states that if a function f(x) has the Fourier transform F (s),
then the Fourier transform of f(ax) is 1

|a|F ( s
a
). This means that the aliased

signals get closer to each other with larger sampling distance. If the aliased
signals overlap, the true signal can no longer be recovered correctly.

3.3 k-t sampling

In dynamic imaging, k -space must be sampled over time as well. Time is
discretized in a number of time frames with sufficient rate to capture the
dynamics of the object being imaged. The standard method is to sample
each k -space position once in every time frame. This can be referred to
as regular sampling of the k-t space with full density, shown in Figure 3.1
together with the resulting aliasing of the signal in the x-f space.

To reconstruct the data sampled with full density as above, a rectangle
function can be used to cut out the transform of the main signal. If data is
not fully sampled, or equivalently, if the transform is larger than expected,
the aliased signals will overlap with the main signal transform, causing
reconstruction errors, as shown in Figures 3.2. This is actually quite often
the case, especially in the temporal dimension, because the object being
imaged is seldom truly bandlimited in the temporal dimension. This is not
a big problem, because the energy content in the high temporal frequency
components is very small compared to in the lower frequency components.

3.4 Temporal resolution

Requirements for spatial and temporal resolution for cardiac imaging often
require acquiring data over the course of several heart beats. By assuming

1The shah-function is usually defined as a function of x, but since sampling in MRI

is performed in k -space, the argument variable k is used here.
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k x

t f

Figure 3.1: Regular k-t sampling with full density. Each dot shows a sam-
pling position (left) and the corresponding transforms of the signal (right,
white) and aliased signal (right, gray) are separated enough, enabling alias-
free reconstruction.

that the object undergoes identical motion in each heart beat, different
parts of k -space can be sampled in the same cardiac phase but in differ-
ent cardiac cycles. This is a quite good approximation, but degraded by
respiration or arrhythmia during the acquisition.

There are different methods of controlling k -space acquisition order and
keeping track of which parts of k -space have been acquired during the
experiment.

3.4.1 Prospective cardiac gating

Prospective cardiac gating [15], sometimes called triggering, works by al-
ternating monitoring of a cardiac triggering device, such as an electrocar-
diogram (ECG), and acquisition of k -space data. The acquisition scheme
starts by waiting for an R-peak in the ECG, meaning the onset of systole.
After the R-peak is detected, the acquisition is delayed for a predetermined
time, trigger delay. After the trigger delay, a fixed predetermined number of
time frames are collected by acquiring another fixed predetermined number
of k -space profiles for each time frame. After acquiring data from all time
frames, monitoring of the triggering device is repeated. In each successive
cardiac cycle, different lines in k -space are acquired. The acquisition is
finished when all k -space lines have been acquired.
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Figure 3.2: Regular k-t sampling with half density in the spatial frequency
dimension (a) results in overlapping aliased signals (b), causing spatial aliasing
errors after reconstruction. Regular k-t sampling with half density in the
temporal dimension (c) also results in overlapping aliased signals (d), causing
temporal frequency aliasing errors after reconstruction.

In prospective methods, the time frames are classified already during
acquisition, making reconstruction easy. No interpolation is necessary and
all cardiac cycles and k -space lines have the same number of time frames.

The drawback of this method is its inability to image the later parts of
the cardiac cycle, because the number of cardiac time frames acquired needs
to be fixed and set small enough to allow the scanner to start monitoring
the ECG before the next R-peak. Some variation of cardiac frequency is
expected, further limiting the number of cardiac time frames. The advan-
tage is the simplicity of acquisition and reconstruction. This method is
often used when only one time frame in a specific phase of the cardiac cycle
is of interest, such as coronary artery magnetic resonance angiography.
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3.4.2 Retrospective cardiac gating

Retrospective cardiac gating [16], often referred to as cine imaging, solves
the problem of imaging the whole cardiac cycle. One common approach
incorporates simultaneous acquisition and monitoring of the ECG. In the
simplest form, acquisition starts by continuously measuring the first k -
space line. When an R-peak is detected, acquisition is advanced to the
next k -space line. Acquisition is terminated when the whole k -space has
been acquired. Instead of only acquiring one k -space line continuously, one
can alternate between several, trading temporal resolution for scan time.
Also, k -space order is not necessarily linear from top to bottom, but can
follow more advanced schemes.

Because of variations in heart rate, the number of measurements for
each k -space line is not the same for every k -space line. The k -space data
is then usually interpolated over time to a number of evenly distributed
time frames. This interpolation usually stretches the cardiac cycle linearly,
but some more advanced models have been proposed. One such model
assumes a constant length systole and stretches diastole linearly, but it has
not shown significant improvement over the simple linear model [16].

The benefits of the retrospective method is the ability to resolve the
complete cardiac cycle, at the expense of implementation complexity.

3.4.3 TRIADS

A method that provides a flexible trade-off between acquisition time and
temporal resolution is Time Resolved Imaging with Automatic Data Seg-
mentation (TRIADS) [17]. Instead of following a fixed scheme for every
cardiac cycle, acquisition is adapted to the cardiac phase. TRIADS de-
cides which k -space line to acquire at a given time, in contrast to the cine
method, which decides the time(s) to acquire a given k -space line. For
every repetition of the TRIADS acquisition, the current cardiac phase is
estimated. The estimated cardiac phase is then binned into one of a fixed
number of time frames prescribed. TRIADS keeps track of which parts
of k -space have already been acquired for each individual time frame, and
acquires a new k -space line. The acquisition continues until a full k -space
has been acquired for all time frames.

In cine imaging, temporal resolution is prescribed by a fixed multiple of
the repetition time, which leads to varying number of time frames acquired
for each k -space line. In contrast, TRIADS prescribes a number of time
frames, and every cardiac cycle is divided into this number of time frames.
Temporal resolution in milliseconds will then vary to be able to fit the
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number of time frames into the cardiac cycle. A schematic comparison
between the cine method and TRIADS is shown in Figure 3.3.

yk

yk yk

yk

Acquisition stage Reconstruction stage

timeframe

timeframe

cine

TRIADS

Figure 3.3: An example of cine and TRIADS acquisition schemes. In cine
imaging, the acquired profiles (ky) are changed at each R-peak. In TRIADS,
cardiac phase, shown as circles with different shades in this example with four
time frames, is estimated for each repetition. Previously acquired profiles are
tracked individually for each time frame. Note that in TRIADS, the time
frames are not required to come in a predictable order.

Since the binning into time frames is done during acquisition in TRI-
ADS, reconstruction is as simple as for the prospective method. Indeed,
one may regard TRIADS as a prospective method, as the binning into
time frames usually involves predicting the duration of the current car-
diac cycle based on previous cardiac cycles, as opposed to designating time
retrospectively. A major difference between TRIADS and prospective gat-
ing is TRIADS ability to image the complete cardiac cycle. Retrospective
re-binning may be performed by interpolation, refining the cardiac phase
estimates. This requires that appropriate k -space lines have been acquired
at a reasonable number of time points spread over the cardiac cycle. The
prospective phase estimates thus still needs to be accurate to some extent.

3.4.4 Simultaneous resolution of both cardiac and respira-

tory cycles

In order to measure cardiac motion affected by respiration, the respiratory
cycle needs to be resolved. Since there is still motion during the cardiac
cycle, sampling must be synchronized with the cardiac cycle. This can
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be accomplished by using a prospective triggering approach and acquiring
only one time frame per cardiac cycle, but this reduces scan efficiency,
because time is wasted waiting for the particular period in every cardiac
cycle. Better efficiency can be achieved by continuously acquiring data,
resolving both cardiac and respiratory cycles simultaneously. This means,
acquiring a full image or volume for every combination of cardiac phase and
respiratory phase. This adds a new dimension to cardiac imaging, being
able to freeze motion during the cardiac cycle and examine what effects the
respiration induces on cardiac function.

With simultaneous resolution of both cardiac and respiratory cycles, the
time line becomes two-dimensional. If the cardiac and respiratory cycles
are fully covered, as when using the TRIADS method, both dimensions are
cyclic. The topology of the temporal dimensions can then be visualized
as a torus, as shown in Figure 3.4. Even though the individual temporal
dimensions are cyclic, their combination in actual time is more complex.
This makes the cine and prospective methods unsuitable for acquiring data
resolved to both dimensions simultaneously. The TRIADS method, how-
ever, only requires that the phases in the individual cycles can be estimated.
Every repetition in the acquisition then involves estimating both cardiac
and respiratory phase, classifying them into a combined time frame, and
the TRIADS scheme takes care of filling the k -space in every time frame.
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Figure 3.4: Simultaneous resolution of both cardiac and respiratory cycles
gives a two-dimensional temporal plane (left). Since the plane is cyclic in
both dimensions, the topology can be visualized as a torus (right).

Acquisition of simultaneous resolution of cardiac and respiratory cycles
in a two-dimensional slice has been presented previously [18]. In that work,
TRIADS was used to resolve the respiratory cycle, but within each cardiac
cycle, retrospective cine imaging was performed. This caused the respira-
tory phase estimates made at the beginning of every cardiac cycle to be
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assumed constant throughout that cardiac cycle. In Paper II, a volumet-
ric method is presented, extending TRIADS to two simultaneous temporal
dimensions.

3.5 k-space acquisition order

In cardiac imaging, balanced steady-state free precession (SSFP) [19] is a
frequently used pulse sequence. It provides strong signal from the blood
and allows for short repetition times with maintained signal level. This
comes at the requirement of a fast gradient switching system and a stable
homogeneous magnetic field. Gradient systems that are fast enough are
readily available, but disturbances in the magnetic field can in some cases
be a problem. One cause of problem is eddy currents disrupting the steady
state. These eddy currents can be caused by large changes in phase encod-
ing gradient strength between successive excitations [20], i.e. large jumps
in k -space.

These effects can be removed by acquiring the same k -space line twice
in two successive excitations and taking the complex average [21]. This
will double acquisition time, however. A way to reduce the effects is to
minimize the jumps in k -space by choosing an appropriate acquisition or-
der. For prospective and retrospectively gated acquisitions, this is easy,
since the k -space order can be controlled directly, and jumps can be min-
imized by choosing a zig-zag pattern. In TRIADS, however, the already
acquired parts of k -space are generally different for different time frames.
Time frames may be acquired in a non-predictable order, especially when
resolving two independent temporal dimensions. Furthermore, the time be-
tween excitations is very short, imposing a limit to how much computations
can be performed in order to optimize the acquisition order in runtime. In
Paper II, this is solved by using a predefined k -space profile order curve
and keeping a time-frame local progress counter that indicates how many
lines along this profile order curve have been acquired for that particular
time frame. The profile order curve is a discrete mapping from the one-
dimensional progress counter to the two-dimensional ky − kz space. The
kx dimension is covered by reading a whole line in k -space for each rep-
etition. Typically, the time spent in each time frame is on the order of
10–15 excitations until the time frame is changed. Since all timeframes are
approximately equally common, the differences between progress counters
is expected to be small. This imposes three design criteria on the profile
order curve:

• Each point in the ky − kz plane should be visited exactly once.
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• Two subsequent points along the curve should be adjacent to each
other in ky − kz space.

• The distance in ky − kz space between two fairly close points on the
curve should be minimized.

A curve which addresses these design goals is the Hilbert curve, proposed
by David Hilbert in 1891. The locality of the Hilbert curve is close to
optimal [22], meaning the maximum value of

|Hilbert(p1) − Hilbert(p2)|
2

|p1 − p2|
(3.4)

has a low bound. The squared distance in the numerator is computed in
ky − kz space and the distance in the denominator is the distance along
the curve for two different points p1 and p2. This means that close points
along the curve are also close in the ky − kz space. Thus, when the time
frame differs between excitations, the jump in k-space will be kept short. A
first order Hilbert curve consists of a single U-shape as seen in Figure 3.5a.
Subsequent levels are generated by replacing the U-shape with four rotated
versions linked together with three joints (Figure 3.5b-d).
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Figure 3.5: A Hilbert plane filling curve can be used to control acquisi-
tion order to reduce eddy current effects in balanced SSFP imaging. It is
constructed recursively, and levels 1 through 4 are shown in a-d.



Chapter 4

Rapid acquisition

The demands for spatial and temporal resolution in cardiac MRI are usually
not compatible with the desired acquisition time. Spatial resolution may
be improved by acquiring more of k -space, at the expense of increased scan
time and decreased signal-to-noise. Scan time may be reduced by decreas-
ing temporal resolution, which is often not desirable. Increase of temporal
resolution is also usually limited by the shortest repetition time available.
Much effort has been put into reducing scan times while maintaining spa-
tiotemporal resolution. One category of improvements is pulse sequence
design for faster acquisition of the same amount of data. Echo-planar meth-
ods acquire a whole plane of k -space in one or a few excitations [23]. These
methods are sensitive to field inhomogeneities, chemical shift effects and
signal decay during the long read-out. Gradient pulse optimization can be
used to some extent to reduce the repetition time, but ultimately, gradient
hardware or peripheral nerve stimulation caused by rapid gradient switch-
ing sets a limit. Another way of reducing acquisition times is to collect
fewer points in k -space. By exploiting spatiotemporal structure of the ob-
ject being imaged, essentially the same images can be reconstructed from
less data. Scan time is reduced by a so-called reduction factor. One should
bear in mind, though, that almost all of these acquisition time reduction
techniques come at the cost of increased noise in the reconstructed image.
Modelling of the signal using various kinds of priors, thereby fitting the
actual data to the model, is commonly used. This model fit is obviously
erroneous if the data does not conform to the model. The difficulty lies in
finding good models, that can also be exploited in MRI. Below is a short
list of common methods to shorten acquisition time.

Partial Fourier imaging

Traditional Fourier encoding consists of acquiring a Cartesian sampling of
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k -space with sufficient sampling density to avoid spatial aliasing. A k -
space is acquired that covers spatial frequencies high enough to encode
the desired resolution. After a fast Fourier transform, a complex image
is reconstructed. The image should ideally be real, which is equivalent
to a Hermitian symmetry in k -space. Half of k -space could therefore be
reconstructed from the other half, eliminating the need for acquiring a
symmetric k -space. In practice, the image is not real, but some phase
variations are present, mainly due to inhomogeneities in the magnetic field,
caused by susceptibility effects. These phase variations usually vary slowly
over the image. By acquiring slightly more than half of k -space (typically
55–65%), the phase variations can be reconstructed from the symmetric
part of k -space and removed from the data [24]. The remaining image is
then more or less real.

Non-Cartesian encoding

It is not necessary to acquire a Cartesian sampling of k -space. Other
sampling schemes may be beneficial. Instead of acquiring a rectangular
k -space, a circular one can be acquired, having the same spatial resolu-
tion in all directions. This eliminates the need to acquire the corners of
k -space. Spiral read-out trajectories [25] instead of linear ones can cover
larger parts k -space per repetition, and is sometimes referred to as echo-
planar imaging methods. Radial and spiral sampling schemes also show
more forgiving aliasing artifacts when using undersampling than Cartesian
sampling. Non-Cartesian sampling will, however, require more complicated
reconstruction. This typically involves a process called gridding [26], or a
non-uniform Fourier transform [27].

HYPR

Projection imaging has gained much interest, because of the forgiving ap-
pearance when using large undersampling factors and thus rapid image
acquisition. HighlY constrained backPRojection (HYPR) [28] has demon-
strated an impressive reduction factor of 225 for time resolved imaging.
Temporal averaging is used to reconstruct a composite image, which is then
used to constrain backprojections of individual radial read-outs, deposit-
ing the projection data only in the objects being imaged. This requires,
however, that the objects in the imaging volume do not change position
over time. Thus, while it might be useful for contrast enhanced vessel
angiography, it is not directly applicable for imaging of cardiac motion.

Parallel imaging

By exploiting the low-frequency spatial encoding and simultaneous signal
reception of surface coils, parallel imaging methods, such as SENSitivity
Encoding (SENSE) [29] or GeneRalized Autocalibrating Partially Parallel
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Acquisition (GRAPPA) [30] can be used to decrease scan time. In these
methods, k -space is undersampled, causing spatial alias overlap. This over-
lap can be recovered since there are several measurements by the individual
coil elements, and the aliased signal components are encoded with different
coil sensitivity. Acquisition may be shortened by a reduction factor up to
the number of coils used in signal reception, but noise becomes an issue
with high reduction factors. This is caused by signal and noise correlation
between the coils; the coils essentially sees the same signal when using a
large number of coils. Typical reduction factors when using SENSE are 2–3.

Keyhole, BRISK, TRICKS

Keyhole [31], Block Regional Interpolation Scheme for k-space (BRISK) [32]
and Time-Resolved Imaging of Contrast Kinetics (TRICKS) [33] are tech-
niques that use varying temporal sampling density for different parts in
k -space. The central lines are typically acquired every time frame and the
outer k-space lines are acquired more seldom, e.g. every second or third
time frame. The idea is that the main part of the image contrast lies in the
center of k-space. The signal model assumes that the dynamic information
has low spatial frequency, which is not valid for moving edges but may be
useful in contrast enhanced angiography.

Reduced field of view

Reduced field of view (RFOV) [34, 35] assumes that the field of view can be
divided into a static region and a dynamic region. A fully sampled k -space
can then be acquired for one time frame, while dynamic imaging can be
limited to the smaller dynamic part of the field of view. Spatial aliasing
overlap will occur in the dynamic data, but can be recovered because the
static data is known.

UNFOLD

Unaliasing by Fourier-Encoding the Overlaps Using the Temporal Dimen-
sion (UNFOLD) [36] samples the k-t space in an interlaced fashion; odd
k -space lines are sampled in odd time frames and even k -space lines in
even time frames. If the time frames are reconstructed individually, spatial
aliasing overlap will occur, due to the undersampling. The aliasing signal
will, however, appear with alternating phase between the time frames and
can be filtered out. This is, in principle, an extension of the model used
in RFOV imaging. Instead of dividing the FOV in an entirely static and a
fully dynamic region, some motion is allowed in the static region. The FOV
is thus divided into a high dynamic region and a low dynamic region. If
the regions are exactly one half of the FOV apart, the particular undersam-
pling in k-t space can be seen as overlapping the low dynamic region with
the high dynamic region, but with one of the regions shifted in temporal
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frequency by one half of the temporal bandwidth. In this sense, the full
temporal sampling bandwidth can be shared between the two regions. By
extending the sampling bandwidth by as much bandwidth as is contained
in the low dynamic region, both signals will fit without aliasing. The extra
bandwidth needed is usually much less than the factor of 2 gained by the
undersampling. UNFOLD can also be seen as a special case of k-t BLAST,
described below.

k-t BLAST and k-t SENSE

A method for dynamic imaging that has gained much attention over the
last few years is k-t BLAST (Broad-use Linear Acquisition Speed-up Tech-
nique) [37]. One of the reasons for its popularity is the high achievable re-
duction factors. Two-dimensional and three-dimensional acquisitions with
reduction factors of 5 or 8 have been presented with very high image qual-
ity. The principle of the method will be described in detail in Section 4.1.
The k-t BLAST approach can also incorporate multiple coils and their spa-
tial sensitivity to improve reconstruction. This is called k-t SENSE, which
is more of a multiple-coil extension of k-t BLAST than a combination of
k-t BLAST and SENSE.

4.1 k-t BLAST

4.1.1 The x-f space

As described in Section 3.3, when sampling the k-t space regularly, signal
aliasing is introduced in the reciprocal x-f space. In typical cardiac imaging
contexts, the signal content in x-f space has a very localized appearance.
Many spatial positions have a very narrow temporal bandwidth. This is
shown in Figure 4.1.
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Figure 4.1: One time frame from a 2D cardiac acquisition (a), from which
one column has been selected (white line). The column’s development over
time (b) has a signal distribution in x-f space that is very localized (c).
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Because one can control the sampling of k-t space, one can also control
how the aliased signals are packed in the x-f space. It is not necessary
to sample the k-t space on an axis aligned grid. A sheared grid, forming
a lattice, is still regular and will create periodic aliasing in the x-f space.
The locations of the aliased signals will then also form a lattice. Using lat-
tice sampling, the localized aliased signals can be packed tighter, enabling
reduced sampling density in k-t space and thus faster acquisition. Two
examples of k-t lattice sampling and the corresponding signal packing are
shown in Figures 4.2.
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Figure 4.2: Dense sampling on a k-t lattice (a) and the corresponding signal
packing in x-f space (b). Tight signal packing with no overlapping ensures
alias free reconstruction. Too sparse lattice sampling in k-t space (c), on the
other hand, packs signals too tight in x-f space, causing overlapping and thus
prohibits correct reconstruction.

Essentially, UNFOLD uses this principle, because the interlaced sam-
pling pattern used in UNFOLD is also a lattice. A fixed predetermined
filter is then used to recover the signal. The filter is a temporal low-pass
filter with different bandwidths for the high and low dynamic regions. The
use of a fixed filter imposes a limit on the packing, because the bandwidth
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of the filter in the whole high-dynamic region must be wide enough to cap-
ture the dynamics of the highest bandwidth in the region. The k-t BLAST
approach uses a filter more closely matched to the actual data, enabling
potentially tighter packing and thus higher reduction factors. Furthermore,
this filter can be used to suppress signal where the aliased signals dominate
over the main signal. This involves obtaining an estimate of the main signal
distribution without aliasing. This estimate can be used to further improve
upon UNFOLD by using a reconstruction filter adapted to the measured
data.

4.1.2 Fast estimation of signal distribution in x-f space

Typical x-f signal distribution of cardiac objects have an additional prop-
erty that can be exploited. The temporal bandwidth varies reasonably
slowly over the spatial dimensions. Especially, regions with low temporal
bandwidth usually form large continuous regions. An estimate of the signal
distribution does not need to be of high spatial resolution [38], but only
indicate where there is strong signal with high temporal bandwidth. The
signal distribution estimate, sometimes referred to as training data, can
thus be measured by sampling only the central lines in k -space. Because
an alias-free estimate is desired, these lines have to be sampled with full
temporal bandwidth, i.e. sampled in every time frame.

A schematic illustration of the k-t BLAST approach is shown in Fig-
ure 4.3. The k-t space is sampled using a sparse lattice, containing high
resolution data with aliasing, and a dense region in the center of k -space in
all time frames, containing information to estimate the signal distribution
in x-f space. Since the sampling pattern is known, the positions of the
aliased signals are also known. By knowing both an estimate of the true
and the aliased signal distributions, one can suppress aliasing in the signal
reconstruction.
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Figure 4.3: Schematic illustration of the k-t BLAST approach. The
k-t space is sampled in two ways. Central lines in k -space (triangles and
black circles) are fully sampled, yielding a low resolution estimate of the sig-
nal distribution. The sparse lattice (triangles and hollow circles) yields high
resolution data with aliasing. An estimate of the aliased signal can be obtained
from the signal estimate and sampling lattice. Through Wiener filtering, the
aliasing can be suppressed, and a Fourier transform in time yields the final
output. The data used in this figure is the same as in Figure 4.1.
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4.1.3 The k-t BLAST reconstruction filter

The measured signal from the lattice sample points is a sum of the true
signal and aliased signals, originating from other spatial locations and tem-
poral frequencies. By treating the signal in each spatial position as wide-
sense stationary in time, a Wiener filter approach can be used to filter out
the aliased signal. Furthermore, measurement noise is also expected, so the
Wiener filter becomes

M2

M2 +
∑

M2
alias + Ψ2

(4.1)

where M 2 is the signal distribution estimate,
∑

M2
alias is the estimated

aliased energy as shown in Figure 4.3 and Ψ2 is the measurement noise
variance.

The k-t BLAST reconstruction filter can be seen as a quotient between
the the desired signal energy estimate and the measured signal energy es-
timate, consisting of the sum of the true signal, the aliased signal and the
measurement noise. Summing the signals in this way is appropriate for un-
correlated signals. The aliased signal is from different spatial locations and
temporal frequencies, by lattice design, and correlation is thus expected to
be very low. The measurement noise is mainly caused by thermal noise
emitted by the subject and in the receiver electronics. The noise is Gaus-
sian white [39], as long as one considers the complex signal measured. The
measurement noise variance can be obtained by measuring the variance
for a homogeneous region in the image, such as the background. For re-
construction of a wide-sense stationary source with wide-sense stationary
noise, the Wiener filter is the optimal linear estimator in the least squares
sense [40].

The effect of the filter varies depending on the amount of signal overlap
in x-f space. In areas with no overlap, the filter reduces to an ordinary
noise suppressing Wiener filter, passing signal where it is dominant over
the measurement noise. Where there is no true signal, the aliasing and
noise is efficiently removed. Where there is overlap, the filter will favor the
dominant signal, passing signal if true signal is dominant or blocking signal
if aliasing or noise is dominant.

This filtering process is intuitively performed by multiplication in the
x-f space, but a corresponding convolution filter kernel in k-t space can
also be considered. Such a filter would fill in the blank positions in the
k-t space which are not on the sampling lattice.
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4.1.4 Implementation details

Lattice optimization

The locations of the aliased signals are determined by the sampling lattice
in k-t space. Thus, different sampling lattices can cause differing amounts
of signal overlap and different reconstruction performance. Maximizing the
minimum distance between the signal aliases can be done independently of
the object being imaged, and is only dependent on field of view, temporal
resolution and reduction factor [41]. Maximizing minimum alias distance,
however, does not guarantee minimum overlap. To minimize overlap, the
actual signal distribution for the particular acquisition has to be taken into
account, which is a much larger problem.

Reconstruction from arbitrary sampling in k-t space has been derived,
but direct analytic solution to the problem was deemed infeasible due to
computational complexity [37]. Iterative solution to this problem has been
presented [42], enabling the use of non-Cartesian k-t BLAST. This may be
valuable even when using Cartesian lattice sampling, because the sample
points will deviate from the lattice due to cardiac or respiratory phase
estimation errors.

Baseline subtraction

The temporal variation of the signal can be modeled as a deviation from a
baseline signal. This baseline can be estimated by computing the temporal
average of each k -space line. This baseline estimate is subtracted from
both the signal distribution estimate and the lattice sampled data before
filtering. The baseline is then added after the filtering step.

It is argued that treating this baseline separately will avoid reconstruc-
tion errors that can otherwise be introduced in the filtering [37]. The base-
line signal does contain the by far strongest signal which could warrant
special treatment since it can be estimated in this alternative way.

Filtering the signal distribution estimate

Since the signal distribution estimate is obtained by measuring very few
lines in the central parts of k -space, and reconstructed by zero-filling the
outer parts, ringing artifacts may occur. Therefore, some window, typically
a Hamming window, is used to reduce this ringing, though the benefits are
reported to be subtle [38].

The original k-t BLAST paper [37] proposes temporal low-pass filter-
ing of the signal distribution estimate, to reduce noise with high temporal
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frequencies. This will also have the effect of suppressing high frequency
signals, effectively lowering achieved temporal resolution. Filtering the sig-
nal distribution estimate itself will also have the unwanted side-effect of
underestimating the high temporal frequencies of the aliased signal. This
can be avoided by performing the temporal low-pass filtering after applying
the reconstruction filter.

Using signal distribution estimate twice

All points in k-t space not on the lattice are reconstructed from the lat-
tice samples using the reconstruction filter in Eq 4.1. This includes the
central k -space lines already acquired for the signal distribution estimate.
Instead of using these reconstructed points, they can be substituted for
the measured data, especially if the central k -space lines were acquired in
an interleaved fashion during the acquisition of the lattice samples. The
measured central k -space lines can also be used in the baseline estimation.
This will remove any aliasing in the lower spatial frequencies of the baseline
estimate.
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Tensor field visualization

Visualization of tensor fields, a three dimensional volume where each point
is a tensor, is a difficult problem. The general concept of a tensor, a mul-
tilinear mapping, is often impractical to visualize. Thus, many approaches
are specialized for a particular application. In the case of myocardial de-
formation, after eigen decomposition, three eigenvectors and corresponding
eigenvalues are obtained. The eigenvectors of the strain rate tensors repre-
sent the principal directions of instantaneous rate of shortening or length-
ening. The eigenvalues indicate the rate of lengthening (positive value) or
shortening (negative value). The tensor still has six degrees of freedom,
making it impossible to solely use color coding.

5.1 Glyph visualization

A common way to visualize a tensor is to use a glyph, a geometric object,
that can describe the degrees of freedom of the tensor. Such a glyph can
for instance consist of three arrows, representing the eigenvectors, scaled
by their corresponding eigenvalues. Since the eigenvalues can be negative,
this can be shown by the color of the arrow, or by making two arrows,
pointing outward for positive eigenvalues or inward for negative eigenvalues,
as in Figure 5.1a. A more intuitive way, especially in the application of
deformation, is to visualize the tensor as an ellipsoid with the principal axes
along the eigenvectors and the corresponding radii set to some basis raised
to the power of the eigenvalue [43]. This would map negative eigenvalues to
a radius between 0 and 1 and positive eigenvalues to a value larger than 1.
The resulting ellipsoid would be the result of deforming a unit sphere with
this strain rate for some period of time. A two-dimensional example is
shown in Figure 5.1b.
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a b
Figure 5.1: Glyph visualization of deformation. Arrow glyph representation
showing eigenvectors and arrowheads indicate the sign of the eigenvalues (a).
In the deformed circle visualization (b), the dashed unit circle represents an
original state and the ellipse represents the shape of the circle after being
deformed according to the deformation indicated with the arrows. For visu-
alization of strain rate, the ellipse represents a circle after being affected by
the strain rate for some period of time.

Using glyph rendering will allow description of all the degrees of freedom
for a tensor. The approach is thus good for a single tensor, but becomes
impractical for visualizing a whole field of tensors. Occlusion and visual
cluttering makes this approach undesirable. The method suggested in Pa-
per I is to separate visualization of a specific tensor of interest and the rest
of the tensor field. The idea is to show all degrees of freedom for one tensor
using glyph visualization, while some simplified global approach is used for
the underlying tensor field. The tensor of interest can then be changed by
navigating through the overview visualization.

5.2 Noise field filtering

A popular method in vector field visualization is Line Integral Convolu-
tion (LIC) [44]. It works by convolving a noise field along line integrals
of the vector field. The convolution kernel is a smoothing kernel, typi-
cally a boxcar or Gaussian. The result, as illustrated in Figure 5.2, is a
painting-like image with strokes along the vector field. The vector field
is thus visualized using a scalar field, which basically contains structured
white noise. The resolution of the scalar field typically needs to be higher
than the resolution of the vector field, because structure with spatial extent
is used to represent the vector value at a single point.

One of the advantages of LIC is that it preserves continuity of the
vector field. The structures are connected along the vector field. LIC
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ba
Figure 5.2: Two-dimensional LIC visualization for vector field visualization
(a) of the vector field in (b). Note the continuous representation and lack of
directionality in the LIC visualization.

has been adopted for tensor visualization by performing the convolution
sequentially for the two dominant eigenvectors [45]. This is done with
fixed convolution sizes, disregarding the degree of anisotropy, the relation
between the eigenvalues, of the tensor field. The approach taken in Paper I
is instead to keep the main idea of LIC, starting with a noise field and filter
it according to the tensor field. The output is a scalar field, with structure
representing the tensor field, that in the three dimensional case can be
visualized using volume rendering. The difference with respect to LIC is
that filtering is no longer performed along a line, but in a linear, planar or
spherical fashion or somewhere in between, depending on the tensor field.
Some kind of adaptive filtering is thus necessary.

5.2.1 Enhancement

A method that uses adaptive filtering controlled by a tensor field is image
enhancement [46, 47]. It is used to perform anisotropic low-pass filtering of
images, avoiding filtering across edges and thereby blurring the image. In
the first step, the local structure of the image is estimated into a structure
tensor with the use of quadrature filters. This structure tensor contains
large eigenvalues in directions of strong edges. In two dimensions, a tensor
with two large eigenvalues corresponds to a point-like structure in the im-
age, a tensor with one large eigenvalue corresponds to an edge and a tensor
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with two small eigenvalues corresponds to a homogeneous region with no
structure. In the first case, no low-pass filtering will be performed. In
the second case, anisotropic low-pass filtering will be performed along the
edge (across the eigenvector direction). In the last case, isotropic low-pass
filtering is performed. The method readily extends to higher dimensions.

The filtering is performed by steerable filters. Instead of constructing
a new filter for each neighborhood, a set of filters is used, consisting of
one isotropic low-pass filter and several directed high-pass filters, as shown
in Figure 5.3. The image is filtered using all filters, and the resulting
output is produced by weighting the filter responses individually at each
point according to the structure tensor. If the low-pass filter is combined
with a high-pass filter in some direction, the result is an all-pass filter in
that direction and a low-pass filter in the other directions. The high-pass
components are added in directions with large eigenvalues, to preserve edges
along these directions.

b c da

Figure 5.3: The filter set for two-dimensional steerable anisotropic filtering,
consisting of one isotropic low-pass filter (a) and three directional high-pass
filters (b-d). The filters can be combined linearly into an anisotropic low-pass
filter of any direction.

The details of how the filter set is constructed and how the filter re-
sponses are combined are described in Paper I.

In the image enhancement method, a structure tensor is estimated from
the image, and the structure tensor is then used to control the filtering by
steering the filtering process. In the tensor visualization approach, the ten-
sor field is already given. The image being filtered is an initial noise image.
It is beneficial to iterate the filtering process in this case, in order to be
able to create curved noise structures. In image enhancement, all-pass fil-
tering is performed in directions of high eigenvalues and low-pass filtering
is performed in directions of low eigenvalues. In visualization of strain rate
tensors, the opposite is desired. This means low-pass filtering along strong
eigenvalue directions, smearing the noise in these directions. The eigenval-
ues are therefore remapped to facilitate this. A further improvement of the
method described in Paper I is to make use of the sign of the eigenvalue in
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this mapping, similar to the mapping of eigenvalues to radii of the ellipsoid.
The result is strong low-pass filtering along positive eigenvalue directions,
medium low-pass filtering along zero eigenvalue directions and all-pass fil-
tering along negative eigenvalue directions. In Figure 5.4, this is shown
for a systolic and a diastolic cardiac phase using volume rendering. One-
directional volume preserving expansion, implying contraction in the other
two directions, is thus visualized as spike-like structure in the expansion
direction. Correspondingly, volume preserving one-directional contraction
is shown as disc-like structure. The resulting structure is thus reminiscent
of the ellipsoid.

ba

Figure 5.4: Tensor visualization of strain rate tensors in the heart wall of
the left ventricle in a short-axis slab in systole (a) and diastole (b). The right-
ventricle has been excluded for the purpose of clarity. In three dimensions,
there is spike appearance in systole, depicting radial expansion, and onion
layer appearance in diastole, depicting radial contraction.

This method can also been used to visualize other tensor fields. One
example is diffusion tensor data representing fiber structure in the brain
measured with MRI. In this case, there are no negative eigenvalues, easing
eigenvalue remapping. Fiber tractography, a popular method for visual-
izing this type of data, creates a vector field out of the tensor data by
explicit tracking [48], but runs into problems at locations of fiber crossings
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where the vector model is inappropriate. An intrinsic tensor visualization
approach handles this automatically. The method described in Paper I
has successfully been applied on diffusion tensor data [49], and an output
volume is shown in Figure 5.5.

Figure 5.5: Volume visualization of fiber structure of the Corona Radiata
in the human brain from two viewpoints. The volume is color coded accord-
ing to the direction of the eigenvector corresponding to the largest eigenvalue
(red = right–left, green = anterior–posterior, blue = superior–inferior). Cor-
pus Callosum can be seen as the red structure. The green structures on top of
Corpus Callosum (top figure) are the Superior Longitudinal Fasciculus. The
motor-sensory fibers can be seen as the blue structure.



Chapter 6

Summary of papers

6.1 Paper I: Tensor Field Visualisation using

Adaptive Filtering of Noise Fields combined

with Glyph Rendering

This paper was presented at the IEEE Visualization conference in Boston
2002. The paper presents a method for tensor field visualization that inte-
grates visualization of a tensor-of-interest with an overview visualization of
the complete tensor field. The idea is to use glyph rendering to show the
tensor-of-interest with all degrees of freedom, while avoiding cluttering and
occlusion associated with glyph rendering of tensor fields. The rest of the
tensor field is then visualized using an alternative approach. A cursor can
be navigated through the background to change the location of the tensor-
of-interest in real time. For the background visualization, a new method
inspired by line integral convolution is presented. A scalar field is created
from the tensor field with the use of tensor-controlled adaptive filtering. A
noise volume is used as a seed input and then iteratively filtered, creating
structure in the noise in the directions of strong eigenvalues of the tensor
field.

6.2 Paper II: Five-dimensional MRI Incorporat-

ing Simultaneous Resolution of Cardiac and

Respiratory Phases for Volumetric Imaging

This paper presents a novel method for volumetric MRI acquisition tempo-
rally resolved over both cardiac and respiratory cycles simultaneously. This
creates a five-dimensional data set, opening new possibilities for studying
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physiological effects caused by respiration on cardiac function. The method
is based on an alternative gating approach extended to two temporal dimen-
sions. The acquisition is controlled in real-time by continuously estimating
cardiac and respiratory phase and sampling k -space individually for each
time frame. The order of k -space traversal is optimized by using a Hilbert
curve which minimizes jumps in k -space. This reduces eddy currents that
cause artifacts when rapid pulse sequences are used.

6.3 Paper III: k-t2 BLAST: Exploiting Spatio-

temporal Structure in Simultaneously

Cardiac and Respiratory Time-resolved

Volumetric Imaging

This paper presents an efficient way of sampling five-dimensional data.
Data is commonly sampled regularly in k-t space, causing signal aliasing
in the corresponding x-f space. By exploiting that the signal localized in
x-f space, signals can be packed more densely. This translates to sparse
lattice sampling in k-t space, reducing acquisition time. The sparse sam-
pling results in signal aliasing in x-f space. This aliasing is suppressed by
the use of a Wiener filter approach, which also suppresses noise. Using this
method, an increase of spatial resolution by a factor of four is possible in
half the scan time compared to full sampling in k-t space.
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Discussion

This thesis has presented new methods for imaging cardiac motion. Anal-
ysis and visualization of local deformation was accomplished by computing
a strain rate tensor field from a velocity field measured by MRI and visual-
izing this tensor field using a combination of glyph rendering and overview
visualization. The overview visualization was performed by volume ren-
dering of a scalar field, computed by adaptive filtering of a noise field to
create spatial structure. A method for volumetric imaging resolved over
both the cardiac and respiratory cycles simultaneously was presented, en-
abling the study of interventricular coupling and septum shape in three
dimensions, throughout the respiratory cycle. Acquisition efficiency was
increased eight-fold by bandwidth sharing in x-f space, i.e. by packing the
aliased signals tighter in x-f space.

7.1 Multidimensional imaging

This thesis presents imaging methods for high dimensional data. Myocar-
dial deformation was represented as a tensor field with six degrees of free-
dom in every point in a time-resolved volume. This corresponds to an inner
dimension of six and an outer dimension of four. Imaging of anatomical
structures in the five-dimensional approach, resolving the cardiac and res-
piratory cycles in a volumetric acquisition, has an outer dimension of five.
In Papers II and III, only scalar image data were acquired, i.e. having an
inner dimensionality of one.

Routine clinical work as of today, on the other hand, often use tra-
ditional methods in lower dimensions. Echocardiography measures ultra-
sound reflectance or a one-directional Doppler shift in each sample point,
corresponding to an inner dimension of one. This is performed along
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one spatial line over time in M-mode echocardiography. Two-dimensional
echocardiography extends this with one additional outer spatial dimension.
There is no question that imaging in higher dimensions is more difficult and
time-consuming, and thus more expensive. One may ask oneself what the
extra dimensions add to what is used in clinical practice today. When it
comes to physiological understanding, especially of the more complex inter-
actions such as interventricular coupling or local myocardial deformation,
directions and variations of motion is not known beforehand. Measuring
motion in only one direction imposes assumptions of the data, which in the
hand of a skillful operator might be quite reasonable for some applications.
For research purposes, however, objectivity is important, and the goal is to
reduce sensitivity to operator dependent acquisition, slice positioning, slice
misregistration and angular error in velocity measurements. MRI studies
have stressed the need of a three-dimensional characterization of the shape
and curvature of the septum [50]. More comprehensive physiological un-
derstanding can lead to better assumptions regarding motion directionality
and slice orientation sensitivity. This can then be transfered into lower
dimensional methods, and to clinical routine.

7.2 Using k-t2 BLAST for respiratory gating

k− t2 BLAST may be used as an alternative to respiratory gating. Instead
of acquiring data only in the end expiration period of the respiratory cycle,
data can be acquired continuously, resolving the respiratory cycle. This
will commonly require longer scan times, due to the fact that the end ex-
piration period usually accounts for about half the respiratory cycle, while
resolving the respiratory cycle to any desirable extent will require more
than two respiratory time frames. This increase in scan time can avoided if
k − t2 BLAST is used for scan time reduction. One may then after recon-
struction select just one respiratory time frame to simulate a respiratory
gated acquisition. An advantage is that this removes the necessity of prior
knowledge of the optimal respiratory phase.

7.3 Costs of sparse sampling

The reduction of acquisition time in k-t BLAST comes from sampling the
k-t space less densely. There are definitively drawbacks of the sparse sam-
pling of data, such as increased noise and reduced temporal fidelity.
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7.3.1 Noise

It is in the nature of MRI that a shorter acquisition time means more noise.
One may visualize this as foldover of noise, that the signal in x-f space
is not really limited to the localized signal bearing parts, but there is a
wideband noise component as well. If there are fewer sampling points
in k-t space, more noise will fold over the desired signal. The massive
reduction factors typically used in k-t BLAST means that very few data
points are acquired. This will have effects on noise. In the application
of cardiac imaging, this extra noise is usually accepted in order to reduce
imaging times or increase resolution. Since voxel sizes in typical cardiac
examinations are quite large, there is quite a lot of signal to begin with.
Also, k-t BLAST carries an implicit Wiener filtering reducing the noise
temporally. Nevertheless, spatial filtering and especially spatiotemporal
filtering, along the lines of image enhancement [46, 47], might prove useful
to reduce noise when high spatial resolutions are approached. In the case of
five-dimensional imaging, edges have a lot of structure that can be exploited
in noise reduction.

7.3.2 Temporal fidelity

The aim of the k-t BLAST method is to reduce imaging times without
sacrificing image quality. When the signals in x-f space overlap, which is
difficult to avoid, some reconstruction error is unavoidable. The use of
the Wiener filter minimizes this reconstruction error in the least squares
sense, but there is still a reconstruction error. Overlapping mostly occurs
between high temporal frequencies of one spatial position and low temporal
frequencies of a different spatial position. The reconstruction error is most
prominent in high temporal frequencies. This is because the signal energy in
the lower temporal frequencies is much stronger than in the high temporal
frequencies and the optimal linear reconstruction from such overlap is to
attenuate the least dominant signal. The result of this is a lower effective
temporal bandwidth, i.e. temporal blurring.

This mechanism of alias overlap attenuation, suppressing the high tem-
poral frequencies to retain the lower frequency content, will provide static
images from k-t BLAST of very high quality. The aliasing which would
arise if zero-filling reconstruction was performed will be minimized. The
loss of temporal bandwidth is only fully exposed in the temporal dimension,
and since this dimension is omitted in static images, a false impression of
retained fidelity is presented. It is therefore important to study the tempo-
ral dimension when using k-t BLAST. This can either be done with the use
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of animation or by using M-mode type visualization, where the temporal
dimension is presented spatially.

The loss of temporal bandwidth is not equal to sampling with a lower
frequency. Sometimes, high temporal bandwidth is used to suppress motion
artifacts, not to resolve a particular temporal event. The temporal blurring
caused by k-t BLAST is done by filtering out the high frequency content,
not letting it alias onto the lower frequencies. In this case, the loss of
effective temporal bandwidth is not a loss of relevant image information.

With the use of short-TR pulse sequences, such as balanced SSFP, it is
possible to trade scan time for improved temporal resolution. By further
applying k-t BLAST, the original scan time can be restored. In this way,
the original temporal bandwidth should at least be preserved, but hopefully
increased, because the bandwidth will be shared between different spatial
positions. With a reduction factor of N, N different spatial positions will
share an N-fold bandwidth. If some spatial positions have low bandwidth,
which is very common in cardiac imaging, more sampling bandwidth is
available to the other positions. What remains to be studied is the practical
gain achievable and the cost of acquiring the signal distribution estimate
and its effect on the accuracy of the Wiener reconstruction filter.

With two temporal dimensions, several parts of the k-t BLAST ap-
proach can be controlled to act differently in each dimension. One may,
for instance, adjust lattice optimization in order to preserve temporal fi-
delity in one temporal dimension at the cost of increasing temporal blur-
ring in the other dimension. Some applications desire high cardiac phase
fidelity, but might accept a larger imaging window in the respiratory cycle,
if k-t2 BLAST is used as a respiratory artifact reduction method. Other
applications desire high respiratory phase fidelity, but can accept temporal
blurring in cardiac phase dimension if the imaging is concentrated on the
slow-varying diastolic cardiac phases.

7.4 Future work

7.4.1 Validation

The methods presented here need to be tested on more subjects and val-
idated against other methods. One difficulty with validating the five-
dimensional approach is that no other method produces similar data. Ro-
bustness and reproducibility can be tested more easily, though, since it only
involves testing a method against itself.
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7.4.2 Tensor field data quality

The estimation of the strain rate tensor involves computing differentials,
which in practice often is implemented by finite differencing. This means
that the process is highly sensitive to noise and image artifacts. The impact
of noise and artifacts on the scalar representation of the tensor field used
for background visualization has not been studied. Nevertheless, the visu-
alization results are likely to benefit from improvements in data acquisition,
especially regarding noise and respiratory motion artifacts.

7.4.3 Optimizing reduction factor versus temporal fidelity

When using k-t2 BLAST, the effect of temporal blurring needs to be stud-
ied. A large reduction factor is favorable for reducing scan time or increas-
ing spatiotemporal resolution, but also increases risk of loosing important
temporal information. The appropriate reduction factor needs to be op-
timized for the individual applications. This is tightly coupled with the
validation of the method.

7.4.4 Acquisition of velocity data using k-t2 BLAST

Two-dimensional phase contrast MRI measurements resolving both cardiac
and respiratory cycles has been presented previously [18] and shows promise
of measuring important respiratory variations in blood flow. To this date,
volumetric velocity acquisition resolved over both cardiac and respiratory
cycles has not been performed. Five-dimensional acquisition in the form
presented in Paper II is too time consuming to add velocity measurements.
Acquisition time shortening, along the lines of k-t2 BLAST presented in
Paper III, is a prerequisite for five-dimensional velocity measurements. Not
only will these measurements be free of respiratory motion artifacts, as
described in Section 7.2, but it will also enable the studies of different flow
patterns in different phases of the respiratory cycle. The right ventricle has
highly respiratory dependent flow, and it’s complex shape is best described
using a volumetric acquisition.

7.5 Potential impact

The tensor field visualization presented in Paper I may help investigators
in the study of local myocardial deformation using fully three-dimensional
measurements. This may in turn be used to obtain new information as to



46 Discussion

which directions and locations of deformations are important for diagnosis
or follow-up of certain diseases and treatments.

Volumetric imaging resolving both cardiac and respiratory cycles simul-
taneously offers a completely new type of data. Study or quantification of
shape and ventricular volumes over the course of the respiratory cycle may
offer new means for physiological description of interventricular coupling.
The method presented in Paper II for measuring such a data set has the
potential to describe these phenomena.

Possibility to shorten acquisition time or increase resolution in cardiac
imaging is always desired. The method presented in Paper III offers a way
to not only use temporal correlation in the cardiac cycle, but also in the
combined two-dimensional space of cardiac and respiratory cycles. This has
the potential of reducing reconstruction error or allowing larger reduction
factors. This is not only applicable in reducing imaging time and increasing
spatial resolution for volumetric imaging, but may also be applied to single
slice imaging for a far broader range of applications.

The k-t BLAST methods yield significant increase in imaging efficiency.
There is no question that there is additional spatiotemporal structure inher-
ent to the dynamics of cardiac and respiratory motion. Finding new ways
to exploit these properties can open new possibilities and applications for
cardiac MRI.
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