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Improved Waveform Fidelity Using Local HYPR

Reconstruction (HYPR LR)

Kevin M. Johnson,' Julia Velikina,' Yijing Wu,' Steve Kecskemeti,'? Oliver Wieben,?

and Charles A. Mistretta':3

The recently introduced HYPR (HighlY constrained back-
PRojection) method allows reconstruction of serial images from
highly undersampled data. In HYPR, individual timeframes are
obtained via unfiltered backprojections of normalized sino-
grams using anatomical constraints provided by a composite
image. Here we develop the idea of constraining the back-
projected data further to a series of local regions of interest in
order to decrease the corruption of local information by distant
signals. HYPR LR (local reconstruction) permits the use of a
longer temporal window in the formation of the composite
image, resulting in increased signal-to-noise ratio and quanti-
tative reconstruction accuracy. Unlike HYPR, the new HYPR LR
method can be applied to images acquired with arbitrary k-
space trajectories. It is suitable for a broad range of medical
imaging applications involving serial changes in image se-
quence, offering exciting new opportunities in the future.
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Dynamic MR imaging applications often require compro-
mises in spatial and/or temporal resolution when standard
reconstruction schemes are used. Acquisition windows
are limited by the passage of contrast agents, as with hy-
perpolarized nuclei and contrast enhanced angiography,
and/or clinical feasibility, as in 3D cine flow imaging.
Recently, several alternative sampling and reconstruction
methods have been introduced that explore data redun-
dancies in such applications. These methods include
model-based reconstructions (1-3) that rely on a priori
information and compressed sensing methods (4,5), which
aim to reduce the number of k-space points to represent a
given object.

Recently, HighlY constrained backPRojection (HYPR)
(3) reconstruction has been used in conjunction with un-
dersampled radial acquisitions to permit radial undersam-
pling factors of up to 80 in 2D and 1000 in 3D (6-8) in
selected time-resolved applications in which the images
are sparse and have a high degree of spatiotemporal cor-
relation. Unlike other acceleration methods, where signal-
to-noise ratio (SNR) tends to decrease in proportion to the
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square root of the acceleration factor, HYPR maintains
SNR from the composite image used to constrain the un-
filtered backprojection process. While originally formu-
lated for angiography, HYPR has been applied to a wide
range of imaging methods including hyperpolarized gas
imaging, cerebral diffusion, and cine phase contrast, all of
which have temporal information that is spatially corre-
lated.

In the original HYPR method, a series of radial acquisi-
tions with interleaved k-space projection sets is acquired.
Using 1D discrete Fourier transform, we obtain image
space profiles P}, i = 1...N,, where N, is the number of
projections acquired at each timeframe. Each of these Ra-
don projections is then normalized by the corresponding
Radon projections Pi, i = 1...N,, of the composite image I,
that is reconstructed by conventional methods from the
projections in several or all of the acquired timeframes. An
unfiltered backprojection operator B is applied to each
normalized projection. The average of all the back-
projected information for each timeframe may be regarded
as a weighting image I,. The individual timeframe weight-
ing images provide dynamic information. The final HYPR
images Iy are obtained by multiplication of the individual
timeframe weighting images with the composite image,
and can be described as:

_ o1& (P
In(t) = I (1) = IC~NFIZIB<PZ) (1]

In the limit of extremely sparse images or images with
complete spatiotemporal correlation the HYPR algorithm
provides near exact reconstruction. However, as the spar-
sity and spatiotemporal correlation deteriorate, there can
be crosstalk of signals from different portions of the imag-
ing volume. This crosstalk has generally forced the use of
narrow sliding window composites to improve waveform
fidelity. Since the sliding window composite has fewer
projections, it has more artifact than a full-length compos-
ite would. A HYPR-based method presented here uses the
concept of local reconstruction (HYPR LR) by constraining
the unfiltered backprojected information to local regions
in order to reduce the crosstalk and improve waveform
fidelity. Simulations were performed to compare the new
HYPR LR method to the original HYPR method and deter-
mine properties of the new method.

THEORY

In the original HYPR algorithm the unfiltered backprojec-
tion process spreads the weighting ratios across the entire
image, as shown in Fig. 1a,b. Conceptually, projections
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FIG. 1. Schematic comparison of backprojection used in HYPR and
HYPR LR. a: Radon projection, inherent to the original HYPR, adds
mixed temporal information together. b: HYPR weighting images
are reconstructed used unfiltered backprojection which spreads
information across the whole image. c¢: When the Radon projection
is done locally by calculating the line integral over a local region, it
contains information only about the local region. d: A localized
unfiltered backprojection, which deposits the local projection infor-
mation into this local region, effectively avoids the crosstalk be-
tween objects.

could be made more local by reconstructing filtered back-
projection (FBP) images for each timeframe and then re-
projecting parts of the image volume confined to local
regions of interest (ROIs) as shown in Fig. 1c. The resulting
localized projections only contain the information about a
locally defined region. Such projection information is then
uniformly backprojected along portions of lines within the
local region giving more accurate prediction of the weight-
ing information, as shown in Fig. 1d. Note that we do not
necessarily have to reproject localized information along
the same projection angles at which the original k-space
data were acquired. In fact, an arbitrary number of projec-
tion angles can be realized. As we increase the number of
projection angles and shrink the local ROI the sum of these
local projections becomes the sum of the signal values in
the region of local reconstruction, and is equivalent to the
value obtained by convolving the image with a local uni-
form filter (a disk function). A series of weighting images
can be formed by passing both the individual timeframe
and composite images through such a filter and taking
their ratio. Finally, these weighting images are multiplied
by the composite image to obtain the HYPR LR reconstruc-
tion for local ROIs. Mathematically, this procedure can be
expressed as follows:

FQI,
Ii(t) = Ic'% [2]
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where F is a convolution kernel, I, is the FBP reconstruc-
tion of an individual timeframe, and I, and I. are the
composite images. The additional superscript “t” on the
composite images is a reminder that the composite image
I, has been reprojected at the same angles as in the current
timeframe image I.. This reprojection is beneficial in re-
ducing the unwanted streak artifacts, although not neces-
sary if artifacts in the timeframe image have been effec-
tively removed by F.

We can generalize the above image reconstruction for-
mula to suit arbitrary sampling trajectories:

_ 0]
IH(t) - Ic. Iw(t) - IC.W [3]

where @ is a reconstruction operation of k-space data for
the timeframe (k;) and the composite (k%). For each partic-
ular sampling trajectory, ® is designed to reduce aliasing
artifacts and/or improve the SNR of the reconstructed im-
ages. In the case of radial imaging where k-space is over-
sampled in the central region, ® is a low-resolution recon-
struction as described above.

We refer to the family of reconstruction techniques (Eq.
[3]) as HYPR LR. Figure 2 shows a block diagram of one of
several possible implementations of HYPR LR. The
k-space data for a timeframe can be acquired with a highly
undersampled interleaved trajectory, e.g., with radial or
spiral sampling (Fig. 2a). The composite image k-space
data (2b) are formed from all or a subset of the congregate
acquired data. In (2c) and (2d) these data are transformed
to image space, denoted by I, and I, respectively. A unique
composite image for the timeframe ¢ is constructed as
discussed above (2e). These two images are convolved
with a kernel chosen to preserve the local temporal behav-
ior in the smallest vessels of interest (2f) and (2g). The
weighting image I, is then obtained (2h) and multiplied by
the composite image, I, as in the basic HYPR technique
(2i) to form the final HYPR LR frame I}

It is demonstrated in the Appendix that, as in the orig-
inal HYPR algorithm, the SNR level of the individual
timeframes obtained in the HYPR LR reconstruction is
primarily determined by the SNR of the composite image
provided that the number of nonzero elements in the con-
volution kernel F is comparable to the number of time-
frames in the acquisition.

MATERIALS AND METHODS

The properties of the new HYPR LR method, the original
HYPR method, and FBP reconstructions of undersampled
timeframes were compared using two numerical phantoms
consisting of simulated vessels with different time courses
for a contrast-enhanced angiography exam. The first nu-
merical phantom represents an extreme case, where a cir-
cular “artery” with 16 pixel diameter is surrounded by a
half annulus “vein” with thickness of 16 pixels. The dis-
tance between the two vessels is 25 pixels. The second
numerical phantom represents another extreme case,
where a circular “artery” and a circular “vein,” both 16
pixels in diameter, are separated by just two pixels. The
image matrix is 256 X 256. All sampling was performed in
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k-space with independently realized real and imaginary
Gaussian noise, 1.5% of the peak image amplitude. To
avoid differences due to truncation and sampling error,
truth images were created using a noise-free fully sampled
acquisition.

Forty sequential images in the time series were formed
using 20 interleaved projection angles per image, sched-
uled using a bit-reversal algorithm. Both HYPR reconstruc-
tions were performed using composite images formed from
the full time series as well as sliding composite images
with windows of 5, 7, and 11 frames centered at each
timeframe. Filtering was performed in k-space using a
radial symmetric Gaussian filter with cutoffs to reduce the
resolution by factors of 9, 13, 18, and 27.

The resulting images were evaluated on four criteria:
amount and severity of streak artifacts, SNR, waveform,
and profile fidelity. For evaluation of both waveforms a
7 X 7 pixel ROI was placed in both vessels. Noise mea-
surements were done using the same ROI placed on the
difference of two independently realized images. Arterial/
venous (A/V) ratio curves were calculated by dividing ROI
measured arterial curves by the venous curves as a quan-
titatively measure of arterial-venous separation.

RESULTS

Figure 3 compares the first phantom with the FBP, original
HYPR (hyprO), and HYPR LR reconstructions using reso-
lution reduction factors of 9, 18, and 27 (denoted as
hyprLR9, hyprLR18, and hyprLR27) for the case of all-
inclusive composite images comprising all 40 timeframes.
As expected, the streak artifacts are the worst in the FBP
reconstruction due to the high level of undersampling. The
original HYPR reconstruction has fewer streak artifacts
than the HYPR LR9 method, which retains some streaks
since it uses weighting images derived from the FBP im-
ages. As the weight image resolution is reduced the streaks

in the HYPR LR image decrease with minimal distortion of
waveforms. Due to the averaging of the composite image
over a long period of time, as well as crosstalk between the
vessels, the waveforms of the original HYPR reconstruc-
tion are not only suppressed in amplitude but also dis-
torted (shifted in space and spread in time). The local
nature of HYPR LR is unaffected by the length of the
composite image, and waveform fidelity is significantly
improved compared to HYPR. There is, however, a depen-
dence on weighting image resolution. When the weighting
image resolution is less than the vessel diameter, for case
HYPR LR9, the waveforms it generates match the original
almost exactly (measured signal deviation less than 1.5%).
As the weighting image resolution becomes comparable to
the vessel diameter but less than the intervascular dis-
tance, as in the case HYPR LR17, averaging with nonvas-
cular signal results in a small (less than 3.9%) suppression
of amplitude. The shape of the waveform is maintained.
When the weighting image resolution exceeds the distance
between two vessels, for case HYPR LR27, averaging with
the background and the adjacent vessel not only sup-
presses the amplitude but also distorts the shape of the
waveforms.

Figure 4 shows a similar comparison for the case of
sliding composite images with windows of 5 and 11
frames centered at each timeframe. For the original HYPR
method, when a narrower 5 frame composite was used
(hyprO5), the waveform fidelity improved compared with
the wider composite window 11 (hyprO11). This is ex-
pected since the composite is now more “local” in time.
However, the streak artifacts increased due to the reduced
number of projections in the composite images. For the
HYPR LR method, changing the duration of the composite
image has little effect on the waveforms. However, the use
of the longer composite image in the HYPR LR case in-
creases SNR and reduces artifacts of individual time-
frames.
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Actual

FIG. 3. Comparison of image
quality and waveform accuracy
using 20 angles per frame and a
composite length of 40 frames.
Timeframe 12 is shown with the
corresponding waveforms of both
objects for each method. Original
HYPR (hyprO) has the lowest ar-
tifact level, but significantly dis-
torts the waveforms. When the
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Figure 5 compares the waveforms and SNR for both
methods for a reasonable choice of operating parameters
(based on results in Figs. 3 and 4), more precisely, a
7-frame sliding composite image for HYPR reconstruction
(hyprO-sw7) and a full composite with a factor of 13 re-
duction in resolution of the weighting image for the HYPR
LR method (hyprLR13). In these examples the waveform
fidelity and SNR of the HYPR LR technique are superior to
those of the original HYPR.

Figure 6 shows comparison of waveforms for the second
phantom, where two circular vessels with different time
courses are close to each other. Ten projections per time-
frame were used for both HYPR methods. The waveform
fidelity and streak content of the HYPR LR technique with
factor of 13 reduction in resolution of the weighting image
and a full composite image (hyprLR) are improved relative to
the original HYPR with a 7-frame composite (hyprO). HYPR
LR has better A/V separation than the original HYPR recon-
struction and its deviation from the actual A/V ratio of the
phantom is less than 5%. Figure 6 also compares the profiles
across the two vessels. Since the weighting image resolution
for HYPR LR is larger than the intervascular distance, distor-
tion of the vessel profile can be observed. However, the
crosstalk is limited only to voxels at the inner edges of the
vessels, where the filtering process mixes signals from both
vessels. This is not the case for the original HYPR method,
where crosstalk is observed across the entire vessels.

DISCUSSION
The results of Figs. 3—6 demonstrate some general trends.

® The HYPR waveform improves as the duration of the
composite image is decreased. However, streak arti-

Time Frame

facts become more pronounced due to the insufficient
number of projections in the composite images.

® HYPR LR waveform fidelity has much less depen-
dence on the duration of the composite image than the
original HYPR method.

® There is a tradeoff between streak artifacts and wave-
form fidelity as weighting image resolution of HYPR
LR is varied. Lower-resolution weighting images re-
duce the streak artifacts more. However, when the
weighting image resolution is large enough to overlap
with two vessels that have different time courses, the
shapes of these vascular waveforms may become dis-
torted.

® The HYPR LR waveform fidelity is better than the
original HYPR waveform in the case when the wave-
forms change rapidly or crosstalk of different wave-
forms becomes problematic.

® The HYPR LR technique has SNR advantages over
basic HYPR due to its tolerance of longer composite
images.

Although HYPR LR is less influenced by signal
crosstalk, waveforms can still be altered when two small
vessels with different waveforms are close to each other.
For such cases, tradeoffs between waveform fidelity and
streak artifacts arise as the weighting image resolution is
reduced to preserve the waveform. Simulations shown in
this study are based on the 2D case, where streak artifacts
are more obvious than 3D case (i.e., VIPR (9)). In the VIPR
datasets, undersampling artifacts are spread into 3D,
which allows the HYPR LR weighting image resolution to
be reduced further to avoid crosstalk from nearby vessels
without degrading the image quality.



460 Johnson et al.
== Actual == Actual
> '| =*=hyprLRS - 1t =e=hypro
@ ==hyprLR11 @ ==hypri1
[} [}
k= I=
— ] = .
® @
c 3 o .
2 2
w w
FIG. 4. Comparison of original
0 . 0 . ) HYPR and HYPR LR using 20 an-
5 15 25 5 15 25 gles per frame with 5 frame

Time Frame

(hypr5,hyprLR5) and 11 frame
(hypr5,hyprLR5) sliding window
composites. Original HYPR wave-
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The simulations performed in this study have several lim-
itations that lead to improved performance of original HYPR
processing relative to the realistic situations. While trajecto-
ries in the simulations were exact, actual k-space trajectories
are subject to delays and eddy currents that distort the tra-
jectory. In the original HYPR, these delays cannot be ac-
counted for due to the inherent Radon transform-based re-
construction. On the other hand, since HYPR LR is not re-
stricted to radial acquisitions, trajectory deviations are

acceptable and can be accounted for in reconstruction (10).
Furthermore, phase effects were ignored in this study. Sig-
nificant phase variations from phase-array coils and off-res-
onance can lead to signal cancellation within the acquired
projections. While the original HYPR has difficulties in these
situations, HYPR LR should perform better, as the weighting
images are based on local data which should have more
coherent phase. Actual performance with respect to phase
variation needs further investigation.
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In this article we compare HYPR LR only to the original
HYPR, although several refinements of the latter have been
proposed recently. Iterative HYPR algorithms have been
introduced to improve temporal waveform fidelity (11—
13). Furthermore, a slightly different HYPR implementa-
tion interchanging the order of backprojection and normal-
ization was proposed (14):

-1
Np

I(t) = I.-| X B(P)

N,

> B(P)

i=1

(4]

This formulation leads to a HYPR LR reconstruction
with a 1/|k,] convolution filter. In a similar fashion, the
HYPR LR operators may be interchanged to yield an alter-
native HYPR LR reconstruction:

I,
M0=Q<F®f) (5]

Unlike the original HYPR, where Egs. [1] and [4] yield
similar results, use of Eq. [5] instead of Eq. [2] results in a

- Actual
==F/D
==D/F

Signal Intensity

0

FIG. 7. Effects of changing the order of operations in HYPR LR.
Filtering then dividing (F/D, Eq. [2]) results in sharper edges than
dividing then filtering (D/F, Eq. [5]) with no significant difference
regarding streak artifacts.

spatial blurring, as shown in Fig. 7. There is evidence that
using a different convolution filter, such as the median
filter in Eq. [5], improves the performance of this alterna-
tive algorithm. The various iterative and noniterative for-
mulations of HYPR require comparison with respect to
composite-length, reconstruction time, spatiotemporal
correlation, noise performance, and temporal response. It
is likely that for some situations some HYPR reconstruc-
tions may be more appropriate than others. For example,
in cases of significant motion, spatiotemporal correlation
will be very limited, leading to reduced performance of
noniterative HYPR methods. In these cases, iterative meth-
ods may have improved performance at the cost of in-
creased noise and processing complexity.

CONCLUSIONS

HYPR LR provides potential advantages such as improved
waveforms and SNR, but involves tradeoffs in streak arti-
facts that depend on the size of the weighting image reso-
lution used in the reconstruction. HYPR LR can be easily
applied to images generated by arbitrary k-space trajecto-
ries and reconstruction time is significantly shorter than
for iterative methods and the original HYPR algorithm.

APPENDIX (NOISE CONSIDERATIONS)

In order to estimate variance of noise in images recon-
structed using HYPR LR algorithm we use the so-called
Delta Method (15), stating that if G is a function of random

G oG
variables (x;), then Var(G) = EIE,E &COV(XI-,X/-). In the
case of HYPR LR this amounts to: Y

IN? C\? . C-1¢? .
Var(H) = i Var(C) + i Var(I}) + D Var(I;)
c-I¥ C-If
+ 2( — | Cov(C,I¥) + 2| —5 | Cov(C,I¥

k3 2
I; I

CZ . Ik
+ z(Ika‘) Cov(IIY  [6]

c
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To find values of the individual terms in this formula,
we note that the noise in MR images usually comes from
the electric noise in the acquired k-space samples. The
stochastic noise in the reconstructed individual time-
frames images can be modeled as additive independently
identically distributed Gaussian noise with zero mean and
variance Var(IY) = o*. Since the composite image C is
averaged over a temporal window of Nyframes, its variance
is Var(C) = ¢*/N;. When we convolve the composite im-
age with a kernel F (whose elements are normalized so that
they sum up to 1), this further decreases the variance of the
resulting image, Var(C) = ¢®/(NiNy), where Ny is the num-
ber of nonzero elements in the convolution kernel. The
same holds true for the filtered individual timeframe im-
ages, Var(IY) = ¢*/Ng. In order to find covariance between
noise in pixel values in the composite and filtered com-
posite images, we use the definition of convolution and
properties of covariance to obtain:

Cov(C,I¥) = Cov(C(x), X F(x = y)C(y))
= EF(X — y)Cov(C(x),C(y)) = F(0)Var(C(x)), [7]

since all summands but one are negligible per our as-
sumption about the nature of stochastic noise. Finally,
because the composite image is typically averaged over a
long temporal window, the noise in individual timeframes
is practically uncorrelated with the noise in the composite
image, more so in the filtered composite image I¥. Hence,
the last two terms in Eq. [6] can be neglected. Therefore,
taking into account the fact that all three images C, I, and
I* have the same order of magnitude, we obtain:

2 2 2

Var(H o’ o o
ar(H) = Nf+ NK+ NN

o o

Ny 1
+F(O)Nfﬁf(1 +ﬁ;<+ﬁ1<+ F(0)> [8]

Since in practice the number of nonzero elements in the
convolution kernel is comparable to the number of time-
frames (e.g., Nx = 81 or 169 and N; = 40 in the simulations
in this study) and for the uniform convolution kernel
F(0) = 1/Ng, we obtain that the SNR in the HYPR LR
reconstructed images is primarily determined by the SNR
of the composite image used in the reconstruction (Var(H)

Johnson et al.

is on the order of 1.25-1.5 Var(C) in the examples in this
article.
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