Using MLE and EM for Image Reconstruction

Siavash Jalal

June 26, 2008

1 Maximum Likelihood Estimation(MLE)

Suppose the unknown object is represented by a set of N volume elements or voxels. The object can then be described by an $N \times 1$ column vector f, the *n*th element of which is f_n . Now we map f to projection space with a $M \times N$ matrix H, then the data consist of a set of M measurements $\mathbf{g}_m, m = 1, \ldots, M$, which can be regarded as components of an $M \times 1$ column vector g. the index m specifies both a particular detector element and the projection angle. \mathbf{g}_m , is the number of photons detected in the mth data bin. We can see H_{mn} as probability of detecting a photon from voxel n and detected by mth measurement. For a fixed f each \mathbf{g}_m is a Poisson random variable. We can thus write the conditional probability \mathbf{g}_m conditioned on a particular f, as

$$\mathbf{P}\left(\mathbf{g}_{m}|f\right) = \left[\frac{\left(\bar{\mathbf{g}}_{m}\right)^{\mathbf{g}_{m}}}{\mathbf{g}_{m}}\right] \mathbf{e}^{-\bar{\mathbf{g}}_{m}},\tag{1}$$

Where \mathbf{g}_m is the conditional expectation value of \mathbf{g}_m given f. or $\mathbf{E}(\mathbf{g}_m|f)$. For given f the components of g are independent, so the joint probability of \mathbf{g}_m 's is

$$\mathbf{P}(\mathbf{g}|\mathbf{f}) = \prod_{m=1}^{M} \mathbf{P}(\mathbf{g}_{m}|f) = \prod_{m=1}^{M} \left[\frac{(\bar{\mathbf{g}}_{m})^{\mathbf{g}_{m}}}{\mathbf{g}_{m}} \right] \mathbf{e}^{-\bar{\mathbf{g}}_{m}},$$
(2)

and this is nothing but likelihood. Where $\bar{\mathbf{g}}_m = \sum_{m=1}^M H_{mn} f_n$. If we maximize log of equation (2) we will get,

$$f_n = f_n \frac{1}{s_n} \sum_{m=1}^M \frac{\mathbf{g}_m}{(Hf)_m} H_{mn},\tag{3}$$

Where $s_n = \sum_{m=1}^{M} H_{mn}$ Shepp and Verdi(1982) claimed that with no loss of generality we can assume that $\sum_{m=1}^{M} H_{mn} = 1$

2 EM Algorithm

We start with initial estimate of f, call it f^{old} , and $f^{old} > 0$ for n = 1, ..., N. also \mathbf{g}_m which is number of of photon detected in measurement m is our incomplete data. We define complete data \mathbf{g}_{mn} , as number of photon from voxel nth and detected in measurement mth, Where n = 1, ..., N and m = 1, ..., M. For a given f^{old} then our E step of EM algorithm is

$$\hat{\mathbf{g}}_n = E\left(\mathbf{g}_n | f^{old}, \mathbf{g}_m, m = 1, \dots, M\right)$$
(4)

Where \mathbf{g}_n is is number of photon has been detected any where and $\hat{\mathbf{g}}_n$ is our estimate for number of detected voxel n. If $\hat{\mathbf{g}}_n$ is our estimate of number of voxel n it is also the maximum likelihood estimate for density of f_n ; this is our M step. So we have

$$f_n^{new} = \hat{\mathbf{g}_n} = E\left(\mathbf{g}_n | f^{old}, \mathbf{g}_m, m = 1, \dots, M\right)$$

replacing \mathbf{g}_n by $\sum_{m=1}^{M} \mathbf{g}_{mn}$ we get

$$f_n^{new} = E\left(\sum_{m=1}^M \mathbf{g}_{mn} | f^{old}, \mathbf{g}_m, m = 1, \dots, M\right)$$

or

$$f_n^{new} = \sum_{m=1}^M E\left(\mathbf{g}_{mn} | f^{old}, \mathbf{g}_m, m = 1, \dots, M\right)$$

because \mathbf{g}_m 's are independent we have

$$f_n^{new} = \sum_{m=1}^M E\left(\mathbf{g}_{mn} | f^{old}, \mathbf{g}_m\right)$$
(5)

Notice that \mathbf{g}_{mn} 's have independent Poisson distributions with parameters $lambda_{mn}$ which is equal to $f_n H_{mn}$. Also we use this property that if X_i for $i = 1, \ldots, n$ are independent Poisson variables with parameters λ_i then conditional distribution of $X_j | \sum_{i=1}^n X_i = x^*$ is Binomial $(x^*, \lambda_j / \sum_{i=1}^n \lambda_i)$ Using this property we can write

$$E\left(\mathbf{g}_{mn}|f^{old},\mathbf{g}_{m}\right) = \frac{\mathbf{g}_{m}f_{n}^{old}H_{mn}}{\sum_{n=1}^{N}f_{n}^{old}H_{mn}}$$

combining this and (5) we will get

$$f_{n}^{new} = f_{n}^{old} \sum_{m=1}^{M} \frac{\mathbf{g}_{m} H_{mn}}{\sum_{n=1}^{N} f_{n}^{old} H_{mn}}$$
(6)