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1 Maximum Likelihood Estimation(MLE)

Suppose the unknown object is represented by a set of N volume elements or voxels. The

object can then be described by an N × 1 column vector f , the nth element of which is fn.

Now we map f to projection space with a M ×N matrix H, then the data consist of a set

of M measurements gm ,m = 1 , . . . ,M , which can be regarded as components of an M × 1

column vector g. the index m specifies both a particular detector element and the projection

angle. gm , is the number of photons detected in the mth data bin. We can see Hmn as

probability of detecting a photon from voxel n and detected by mth measurement. For a

fixed f each gm is a Poisson random variable. We can thus write the conditional probability

gm conditioned on a particular f , as

P (gm |f ) =

[
(ḡm)gm

gm

]
e−ḡm , (1)

Where gm is the conditional expectation value of gm given f . or E(gm |f ). For given f the

components of g are independent, so the joint probability of gm ’s is

P (g|f) =
M∏

m=1

P (gm |f ) =
M∏

m=1

[
(ḡm)gm

gm

]
e−ḡm , (2)

and this is nothing but likelihood. Where ḡm =
∑M

m=1 Hmn fn . If we maximize log of equation

(2) we will get,

fn = fn
1

sn

M∑
m=1

gm

(Hf)m

Hmn, (3)

Where sn =
∑M

m=1Hmn Shepp and Verdi(1982) claimed that with no loss of generality we

can assume that
∑M

m=1Hmn = 1
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2 EM Algorithm

We start with initial estimate of f , call it f old, and f old > 0 for n = 1, . . . , N. also gm which is

number of of photon detected in measurement m is our incomplete data. We define complete

data gmn , as number of photon from voxel nth and detected in measurement mth, Where

n = 1, . . . , N and m = 1, . . . ,M. For a given f old then our E step of EM algorithm is

ĝn = E
(
gn |f old ,gm ,m = 1 , . . . ,M

)
(4)

Where gn is is number of photon has been detected any where and ĝn is our estimate for

number of detected voxel n. If ĝn is our estimate of number of voxel n it is also the maximum

likelihood estimate for density of fn; this is our M step. So we have

fnew
n = ĝn = E

(
gn |f old ,gm ,m = 1 , . . . ,M

)
replacing gn by

∑M
m=1 gmn we get

fnew
n = E

(
M∑

m=1

gmn |f old ,gm ,m = 1 , . . . ,M

)

or

fnew
n =

M∑
m=1

E
(
gmn |f old ,gm ,m = 1 , . . . ,M

)
because gm ’s are independent we have

fnew
n =

M∑
m=1

E
(
gmn |f old ,gm

)
(5)

Notice that gmn ’s have independent Poisson distributions with parameters lambdamn which

is equal to fnHmn. Also we use this property that if Xi for i = 1, . . . , n are independent

Poisson variables with parameters λi then conditional distribution of Xj|
∑n

i=1Xi = x∗ is

Binomial(x∗, λj/
∑n

i=1 λi) Using this property we can write

E
(
gmn |f old ,gm

)
=

gm f old
n Hmn∑N

n=1 f
old
n Hmn

combining this and (5) we will get

fnew
n = f old

n

M∑
m=1

gmHmn∑N
n=1 f

old
n Hmn

(6)

2


