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The second equality is valid if r xx is nonsingular. See Exercise 4.17. Comparing (4.46)
with (4.21), we make the following observation.

Remark 4.36. If we assume the linear data model (4.16), where X and N are independent
random vectors with zero means, then the form of the minimum variance linear estimator
(4.46) is the same as that of the MAP estimator (4.21). Note that the derivation of the MAP
estimator required the additional assumption that X and N are Gaussian random vectors.

4.5 The EM Algorithm
Let Y be a random vector with a parameter-dependent probability distribution. The EM
algorithm is an iterative procedure that, given a realization of Y, yields a sequence of ap­
proximations to a maximum likelihood estimator for the parameter. The algorithm relies on
an auxiliary random vector X that corresponds to hidden or missing data. X and Y together
make up the complete data. A very general development can be found in [83]. For simplicity,
we suppose that X and Y are discrete and let them have a joint probability mass function
Pex, Y) (x, y; e), where edenotes the parameter of interest. Then the conditional probability
mass function for X given Y is
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where the denominator gives the marginal probability mass function of Y,
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(4.48) py(y; e) = L p(X.Y) (x, y; e).
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By Lx we mean the sum over components x for which P{X = x} > O. The log likelihood
function for Y given observed data y takes the form

ty(e; y) = log py(y; e)

= log p(X,y) (x, y; e) -log PXly(xly; e)

=t(x.y)(e; x, y) -tx1y(e; xIY).

Then for any fixed parameter ev ,

ty(e; y) = ty(e; y) L PXly(xly; ev ) by (4.47)-(4.48)
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Proposition 4.37. If
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Proof. For any parameter (}v+ I,
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subject to

ly(8v+1; y) -ly«(}v; y) = [Q«(}v+I!y; (}v) - Q«(}vly; (}v)]

+[H «(}v !y; (}v) - H «(}v+lly; (}v)].

It suffices to show that the second bracketed term on the right-hand side is nonnegative. Note
that

x

x

=0.

The last inequality follows from the convexity of the negative log (see Exercise 4.18), while
the equality that follows it comes from (4.47)-(4.48). 0

This proposition motivates the following iterative procedure.

Algorithm 4.5.1. The EM Algorithm.
To maximize the log likelihood function ly«(}; y), given a realization y of a random vector
Y and an initial guess (}o for the parameter (},

for v = 0,1, ... , repeat,

1. Compute Q «(} Iy; (}v), the conditional expectation of the log likelihood function for the
complete data, given the observed y and the MLE approximation (}v. In the discrete
case, this takes the form

(4.49)
x

2. Compute a maximizer (}v+l of Q«(}ly; (}v).

Step 1 is called the E-step, and step 2 is called the M-step. That the sequence {(}v}
actually converges to a maximum likelihood estimator can be confirmed under fairly mild
conditions. See [83] and the references therein.

'13.1 An Illustrative Example

The following development is taken from Vardi and Lee [111]. In applications like nonneg­
ative image reconstruction (see Chapter 9) it is important to find a nonnegative solution f to
a linear system

Kf =g,

where the m x n coefficient matrix K and the vector g E jRn have nonnegative components.
Of course such a solution need not be attained, so we seek to minimize some measure of the
discrepancy between the data g and the model Kf. Here we minimize the Kullback-Leibler
information divergence (see (2.52)):
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By a suitable rescaling (see Exercise 4.19) one may assume
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These conditions guarantee that (g, Kf) lies in the domain of PKL.

Minimizing (4.50) under the above conditions is equivalent to maximizing

(4.59)
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subject to the constraints (4.51) and (4.52). To apply the EM algorithm, we first construct
random variables X and Y, with support {I, .,., n} and {I, , .. , m}, respectively, and with
joint probability mass function

(4.60) PiX = j, Y = i} = P(x,n(j, i; f) = kij/j.

Here f E IRn is the parameter to be estimated. The conditions (4.51 )-(4.54) guarantee
that p(X,y;)(j, ilf) is indeed a probability mass function, See Exercise 4.20, The marginal
probability mass function for Y is thenlike nonneg­

solution f to
n n

Suppose we are given observed data g E IRm satisfying (4.55)-(4.56). If each gi is a rational
number, there exists a positive integer r such that

:omponents.
:asure of the
ack-Leibler
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py(i; f) = L P(X,n(j, i; f) = Lkijh = [KfJi.
j=1 j=1

is an integer for each i. The assumption that each gi is rational can be relaxed [111], Now
take r independent, identically distributed copies of Y to obtain a random vector Y, and let
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y = (Y1, ... , Yr) be a realization for which N; gives the number of indices k with Yk = i.
Then the log likelihood function for Y, given data y and parameter f, is
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From (4.47)-(4.48) and (4.60),

the number of occurrences of Yk = i. The log likelihood function for the complete data is
given by

(4.63)

ly(f; y) = I)og PY(Yk; f)
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(4.64)

where Ij denotes the jth component of f v • Then by (4.49),

= r L g; log([Kfl;) by (4.61) and (4.62).
;=1

This establishes the connection between maximum likelihood estimation and nonnegatively
constrained linear equations; see (4.59).

In a similar manner, we can construct r copies of X to obtain a random vector X for
which the pairs (Xb Yd are independent and distributed according to (4.60). Here X is the
hidden data vector, and X and Y together make up the complete data. Take a realization
(x, y) with pairs (Xb Yk), k = 1, ... , r, for which Nij (y, x) denotes the number of indices k
such that Yk = i and Xk = j. Note that for each i,

(4.65)
m n

=LLrg; [logkij +loglj] Nj •

;=1 j=1

The second equality follows from (4.63). This completes the E-step of the algorithm. Show
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k with Yk = i. To implement the M-step, we maximize Q with respect to f subject to the constraints
(4.51)-(4.52). This yields (see Exercise 4.21) the vector f v+1 with components

(4.66)
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4.1. Show that the covariance matrix C (see (4.3)) is symmetric and positive semidefinite.
Provide an example showing that C need not be positive definite.

4.2. Show that if a random vector has independent components and the covariance matrix
C exists, then C is diagonal.

4.3. Suppose that for each i = 1, ... , n, d i is a realization of a Gaussian random variable
Xj having mean /.1. and variance a 2 > O. Show that if the Xi'S are independent, then
the maximum likelihood estimator for /.1. is L:7=1 di / n and the maximum likelihood
estimatorfor a 2 is L:7=1 (dj - /.1.)2 In.

4.4. For the Poisson random vector in Example 4.14, show that E(X) = A. and cov(X) =
diag(Aj, ... , An)'

4.5. Show that the negative Poisson log likelihood function in (4.8) is strictly convex on
the interior of the nonnegative orthant 1R~ and that it has d as its unique minimizer.

4.6. Construct tables analogous to those in Example 4.21 for the toss of three independent,
fair coins.

4.7. Verify equation (4.11) under the assumption that X and Y are independent, jointly
distributed, discrete random variables.

4.8. Prove Theorem 4.24.

4.9. Show that the expression (4.21) gives the MAP estimator in Example 4.26.

4.10. Show that under the assumptions of Example 4.26, the right-hand side of equation
(4.21) gives the conditional expectation, E(XIZ = z). This can be most easily done
using characteristic functions. These are essentially the expected values of the Fourier
transfonns of random variables.

4.11. From (4.21), derive expression (4.22) with ex = (aN/ax)2.

4.12. Prove Proposition 4.29.

4.13. If A is symmetric, it has an orthogonal eigendecomposition A = U diag(Aj) U T with
U T U = U U T = I. Use this fact, along with aij = eT Aej, to prove the equality
(4.28).

4.14. Verify equation (4.38).

4.15. Prove Proposition 4.35.

4.16. Verify equations (4.43)-(4.45).

4.17. Show that rxxKT[KrxxKT + CNr l = [KTCN1K + riir l KTCN1
•

4.18. Show that if J is convex, Lj Wj = 1, and Wi ::: 0, then

J (~ZiWj) :s ~ J(Zj) Wi·

Show that the inequality is strict if the Zi 's are not all equal and each Wi > O.


