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(15.5)

(15.8)

(15.9)

(15.11)

(15.12)

(15.10)g = 'Hf + n,

N

fa(r) = E ()n¢n(r),
n=l

Discretization dilemma

g = 'Hfa + 'Hf - 'Hfa + n == HO + E,

where the overall error E (modeling error plus noise) is given by

E = 'Hf - 'Hfa + n,

15.1.2

In Chap. 7 we discussed in detail various approximate object representations. The
general form of a linear approximation to an object function was given in (7.27) as

,/
(15.6)

where dk){£(k\g} is some operator with two operands, so that its output at each
step depends (often nonlinearly) on both the previous estimate £(k) and the original
data g. The superscript on (') indicates that the operator itself can change as the
iteration proceeds. Often the recursion rule (15.5) will be chosen so that the argmin
solution of (15.4) will coincide with £(00). J-.ft

/I~;ttl~ 6/f
1d7

where the subscript a denotes approximate, and {¢n(r),n = 1, ... ,N} is any con­
venient set of expansion functions. In a more compact operator notation, (15.6)
becomes

fa = DJO, (15.7)

where D¢ is a CD discretization operator and 1'J is its adjoint (hence a DC opera­
tor).

If the coefficients {()n} in (15.6) are derived linearly from the object, we know
from (7.33) that they can be written as

()n = Joo dqr x~(r) f(r) ,

or in operator form as

Mapping a discrete object representation through a CD system In Sec. 7.3 we saw
how object functions map through a linear CD system to form discrete data. If the
CD system acquires M noisy measurements, the discrete data vector g is an M x 1
random vector given by

where 'H is the linear CD operator defined in Sec. 7.3.1 and n is an M x 1 noise
vector. A simple mathematical tautology allows us to write

the ffound by minimizing Q is a linear (or at least affine) function of g ref. (1.195)

or (1.200)], but more generally £is a nonlinear function of g.
Implicit formulations often lead to iterative algorithms for finding the £that

minimizes the functional. In these algorithms, successive estimates £(k) are gener­
ated according to a recursion rule with the general form,
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More specifically, the elements of H are given by (7.304):

(15.14)

(15.13)

Considerations on choosing a discretization scheme The linear discretization problem
boils down to selecting two sets of functions, {¢n(r)} and {Xn(r)}, or equivalently,
two sets of Hilbert-space vectors {ePn} and {:~n}' These vectors affect the accuracy
with which fa(r) approximates the actual object f(r), and they also affect the form
and dimensions of the system matrix H as well as the size and nature of the error
vector €. Finally, through (15.8), the set {:~n} affects the meaning of the parame­
ters {On} that we want to determine.

There are several ways we can approach the problem of choosing {ePn} and
{:~n}' We might say at the outset that we are interested in certain functionals of
the object, such as pixel values, and select the functions {:~n} accordingly. That
would leave us free to choose {ePn} by some other criterion, such as minimizing
the data-space modeling error 'Hf - 'Hfa . Unfortunately, as we shall discover in
Sec. 15.1.3, most functionals that we might choose to estimate do not admit of an
unambiguous estimate. That is, we cannot determine them from the data even in
the absence of noise.

Alternatively, we might want to construct as accurate a representation of the
object as possible for a specified number of terms in the expansion (15.6). In Sees.
7.1.4 and 7.1.5, we learned how to choose {:~n} for minimum object error once {ePn }
was specified. In particular, if {ePn} is an orthonormal set, then {Xn} should be
chosen to be the same orthonormal set if representational accuracy is our concern.

The choice of {¢n} itself might be dictated by statistical considerations. If
we consider a statistical ensemble of objects, then the ensemble-average represen­
tational error is minimized by using the N eigenfunctions of the object covariance
matrix corresponding to the N largest eigenvalues as {ePn}. As noted in Sec. 7.1.4,
this representation is called the Karhunen-Loeve or KL expansion. One problem is
that we do not usually have enough information about the ensemble to be able to
compute the eigenvectors needed in a KL expansion.

No matter how we choose {ePn}, representational accuracy can be improved
hy increasing the number of terms N in the representation. The rank of the matrix
H, however, cannot exceed the rank R of the CD operator 'H, which in turn cannot
l~xceed the number of measurements M. Whenever N exceeds R, therefore, the
problem of finding f) when given g is underdetermined. Moreover, the nature of the
l'ffcctive noise term is unknown, except that € --+ n as N --+ 00 with any sensible
choice of expansion functions.

We are thus faced with a conundrum: If we use an accurate object model
(large N), we cannot possibly find all the coefficients, and if we use a less accurate
model (N :::; R), we make unknown modeling errors before even starting to estimate
coefficients, and the approximate object fa may not resemble the actual object f,

Thus the (mn)th element is the nth expansion function as imaged onto the m th

detector element.

and the system matrix H is given in operator form by (7.307):

":.
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(15.15)

(15.17)

(15.18)

f = fmeas + fnull ,

X = X meas + Xnull .

Since these two subspaces are orthogonal, we can write

Estimability of a single linear parameter Consider a scalar parameter 0 defined by
the linear functional,

Since the data vector is insensitive to null components, the first term represents
what one can learn about B from noise-free data, and the second term is the com­
ponent of B that cannot cannot be measured with the system in question. This
term is zero if either fnull = 0 or Xnull = O. The first condition is often satisfied
in simulation studies but seldom in reality; we have no control over the object oUl'
imaging system is pointed at, so we cannot assert that fnull = O. We can, however,
choose the function x(r) defining 0, so we can make the error zero by choosing it so
that Xnull = O.

If Xnull = 0, the associated parameter B is said to be estimable or identifiable.
If 0 is not estimable, there is an inevitable error of unknown magnitude arising from
the second term in (15.19). Objects differing by null functions will give the samt'
data, and hence the same value for any estimate derived from the data, even though
they might have vastly different true values for B.

For a mental image, think of 0 as the integral of the object over a region defined
by a 0-1 function x(r), but the mathematics will be more general. If we are given
a noise-free data vector g = 'H.f, where 'H. is a linear CD operator, we would like
to know whether we can determine 0 uniquely from g. An equivalent question is
whether we can find an unbiased estimate of 0 when zero-mean noise is present.

To answer these questions, note that we can write B as a scalar product in . /
object space: f?

0= (X, f) . (15.16)

If the system operator 'H. is linear, we can define two orthogonal subspaces of
object space, called measurement space and null space, with the latter defined as
the space of all vectors anull such that 'H.anull = O. The vectors f and X can be
uniquely decomposed as

even if the coefficients can be determined exactly. It is the view of the authors that
the only satisfactory way to resolve this problem is via task-based assessment of
image quality, as introduced in Chap. 14 and discussed further in Sec. 15.1.5.

15.1.3 Estimability

If N < R in a linear expansion like (15.6), the number of unknowns is less than
the rank of the system operator, but it is still not evident that we can estimate
the coefficients {On} from the data g, even in the absence of noise. The coefficients
may not be estimable parameters. The concept of estimability was briefly intro­
duced in Sec. 13.3; we shall revisit the subject here from the viewpoint of image
reconstruction.


