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MLEM as a multiplicative algorithm The iteration rule for the basic MLEM algo­
rithm is

(15.298)

(15.296)

M

g(k+l) = g(k)~ ~ ?m H (15.297)
n n Sn;:-o (H6(k»)m mn,

where Sn is the nth component of the point sensitivity vector, defined in (7.312) as

M

Sn = LHmn .
m=O

An important iterative technique is the maximum-likelihood expectation­
maximization or MLEM algorithm, so called because it can be derived by al­
ternating expectation (E) and maximization (M) steps, and because it maximizes
the likelihood for a Poisson data model. MLEM has been rediscovered several times.
To the authors' knowledge, the earliest paper to present the algorithm was by Metz
and Pizer (1971) at the second international conference on Information Processing
in Medical Imaging (IPMI). Unfortunately, the untimely death of the conference
organizer, Eberhard Jahns, led to the promised Proceedings of IPMI II never ap­
pearing and thus the Metz and Pizer paper never being published.

In the optics literature, the MLEM algorithm was presented independently by
Richardson (1972) and Lucy (1974), and it is still referred to often as the Richardson­
Lucy algorithm. The paper that ignited widespread interest for tomographic appli­
cations was by Shepp and Vardi (1982). Another important early contribution to
the tomographic literature was Lange and Carson (1984).

MLEM is but one example of a broad class of algorithms that alternate ex­
pectation and maximization steps. A rigorous treatment of these more general EM
algorithms was given in an important paper by Dempster, Laird and Rubin (1977),
and an excellent monograph on the subject is McLachlan and Krishnan (1997). In
this section, however, we consider only the MLEM algorithm.

15.4.6 MlEM algorithm

To interpret Sn, consider the usual voxel description of a source where On is the mean
number of photons emitted from the nth voxel and Hmn is the probability that a

j(r) = LA exp(21riPk . r), (15.295)
k

where the sum is, in principle, infinite in two dimensions. In practice, of course, a fi­
nite sum must be used, with the range determined by the amount of superresolution
desired. To transform back to Fourier coefficients, the exact equation is

the out-of-band ones alone.
Positivity and support constraints cannot be implemented readily on Fourier

coefficients, so transformation back to the space domain is still required. The exact
transformation rule is

• 1 1 2 •Fk = L2 d r f(r) exp( -21riPk . r),
Sf

where the object support Sf is assumed to be a square of side L. In practice the
integral would be implemented as a sum, most likely as a DFT (though one with
many more than M elements).
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photon from voxel n is detected in detector m. Then sn(}n is the mean number of
photons from that voxel detected by all detectors, and Sn is the probability that
a photon emitted from voxel n is detected somewhere. We need not worry about
dividing by zero in (15.297) since voxels with Sn = 0 have zero probability of ever
contributing to the data and should not be included in the representation in the
first place.

Unlike the linear algorithms discussed in Sec. 15.4.1 and the modified linear
algorithms discussed in Sec. 15.4.4, MLEM is a multiplicative algorithm where
an estimate is modified by multiplying it by a correction factor rather than adding
a correction term. Other important examples of multiplicative algorithms include
multiplicative ART or MART (Gordon et al., 1970) and its variants (Byrne, 1993;
1995) and the SAGE (space-alternating generalized EM) algorithms (Fessler and
Hero, 1994), but we shall not discuss any of these methods further.

The MLEM algorithm preserves positivity; that is, if the initial estimate 8(0)
is nonnegative, and if all elements of g and H are nonnegative, then all subsequent
iterations remain nonnegative since we always multiply by a nonnegative factor.
By the same token, however, a component of the estimate will seldom be driven
exactly to zero; if H mn is nonzero for any m for which gm is nonzero, then the
correction factor for e~k) will not be zero. In this respect, the MLEM algorithm
is like maximum entropy in that it tends to drive the estimate towards zero but
never quite gets there. The exception would be if 9m = 0 for all detectors for which
H mn =I- 0 for a given n; in that case e~k) would be immediately set to zero.

If we know the support of the object a priori, on the other hand, we can set
the elements of the estimate (in a voxel representation) outside the support to zero
in the initial estimate and they will remain zero for all subsequent iterations.

Finally, note that the algorithm strives for agreement between the actual data
and the image of the estimate. If (H8<k))m = 9m for all m, then the correction
factor is unity and no further change in the estimate occurs. Of course, it may not
be possible to find an estimate such that (H8<k))m = 9m for all m, and in that case
it turns out (as we shall see below) that the algorithm converges to an estimate that
minimizes the Kullback-Leibler distance (see Sec. 15.3.2) DKdg, H8) between the
data and the image of the estimate.

Poisson likelihood As presented so far, the MLEM algorithm is just a convenient
way of finding an estimate that agrees as well as possible (in the Kullback-Leibler
sense) with the data. It has no particular relation to the statistics of the data and
in fact will work with many different kinds of data. We know from Sec. 15.3.2,
however, that the Kullback-Leibler distance is closely related to the log-likelihood
for Poisson data, and we shall now explore this relation further.

If we consider an MD Poisson random vector g with mean H8, then
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and Pr(gI8) is the likelihood of 8 for a given g. One must view this equation
with caution, however, since we are free to choose any representation we like for
the object, with any number of components N. It is only when the finite object
representation is an adequate representation of the data, in the sense that H8 is a
good approximation to 'Hf, that Pr(gI8) is really the likelihood of 8. [See (15.137)

Pr(gI8) = fi exp[-(H8)ml [(H8)~lgm ,
m=l 9m·

(15.299)
If this aJ
of the li

Converg
tion an<
initial e:
hood in,



j = 1, ... , N . (15.301)
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To see whether the extremum is a minimum or a maximum, we take another deriva­
tive:

(15.300)

(15.302)

M

In[Pr(gI6)] = L {-(H6)m + gm In[(H6)m] - In(gm!)} .
m=l

M

1 '" gm
Sn ;;;:0 (H6)m H mn = 1, (15.303)

where Sn is defined in (15.298). We now multiply both sides of (15.303) by ()n,
yielding

M

1 '" gm()n = ()n Sn f:::o (H6)m H mn . (15.304)

To get an iterative algorithm, we replace 6 by a succession of estimates iJ(k) and
use the fixed-point iteration procedure introduced in Sec. 15.4.4; the result is the
MLEM algorithm:

Convergence and stopping rules The mapping defined by (15.305) is not a contrac­
tion and hence does not necessarily converge to a fixed point independent of the
initial estimate. It can, however, be shown to converge in the sense that the likeli­
hood increases monotonically at each step (Dempster et al., 1977). Of course, just

~ M { }8() 8() In[Pr(gI6)] = L - gm 2 HmjHmk .
j k m=O [(H6)m]

All components of g and H6 must be nonnegative for the Poisson law to be ap­
plicable; a negative number of counts makes no sense. Moreover, all elements of
H must be nonnegative, since otherwise a negative component of H6 could occur
for some nonnegative 6. Thus the second derivative is negative everywhere (i. e.,
the log-likelihood is concave), and any extremum must be a maximum. Maximiz­
ing the likelihood is thus equivalent to solving the implicit equation (15.301) for 6.
Moreover, from the discussion in Sec. 15.3.2, it is also equivalent to minimizing the
Kullback-Leibler distance DKL(g, H6).

An extremum of this function occurs at a point where the derivative with respect
to all components vanishes:

M

8~j In[Pr(gJ6)] = fa{-Hmj + (~;)m Hmj } = 0,

MLEM as a fixed-point iteration We can rewrite (15.301) (with the dummy index
j changed to n) as

and the associated discussion.]
With this caveat, the logarithm of the likelihood is given by (15.149), repeated

here for convenience:

M

e(k+l) = e(k).2- '" gm H (15.305)
n n Sn;;;:o (HiJ(k»)m mn'

f If this algorithm converges, it must find a maximum of the log-likelihood (and hence
of the likelihood itself).
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because the algorithm approaches a specified likelihood (the maximum value) does
not mean it approaches a specified image. The likelihood is a function of H8, not
8 alone. If H has null functions, many different 8 can give the same H8 and hence
the same likelihood; which one is obtained by the algorithm depends on the null
components of the initial estimate.

Moreover, maximum likelihood is seldom a desirable end point in image recon­
struction. As we have stressed repeatedly, forcing agreement with noisy data (in
any sense) results in noisy images. In practice, running the MLEM algorithm for
a large number of iterations usually results in a virtually useless image, often one
consisting of a few bright pixels like the night-sky reconstructions discussed in Sec.
15.3.5. (For an example, see Fig. 17.9.)

The most common way of avoiding these problems is just to stop the algo­
rithm before it gives a poor image in some sense. In this case, the image is not a
maximum-likelihood estimate, and it depends on the number of iterations and the
initial estimate. The choice of stopping point is usually made purely subjectively,
though various statistical stopping rules have been proposed (see, for example,
Llacer and Veklerov, 1989) as a means of avoiding excessive noise amplification.
The stopping point should ideally be chosen to optimize some objective measure
of image quality, such as the ability of a human observer to detect an abnormality
(see Sec. 14.2), but in practice it is usually done without regard to task.

15.4.7 Noise propagation in nonlinear algorithms

We have already discussed the noise properties of reconstructed images in several
cases in this chapter. In Sec. 15.2.6 we treated the effect of a linear reconstruction
operator on noise in the data, and in Sec. 15.3.6 we considered implicit estimates
and found that we could get useful analytical forms for the covariance without
specifying the algorithm for actually finding the estimate. Then, in Sec. 15.4.2 we
studied noise propagation through linear iterative algorithms. Now we shall show
how that analysis needs to be modified for nonlinear iterative algorithms. The
main difference will turn out to be that constant matrices are replaced by ones that
depend on the current estimate.

Differentiable update rules All of the iterative algorithms considered in this chapter
have the general form,
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8(Hl) = n(k) {8(k), g} , (15.306)

where n(k) {', .} is a vector-valued functional of its two arguments. The fixed-point
iteration of (15.280) is immediately in this form, and POCS, MLEM and conjugate­
gradient fit as well.

It will be very useful to assume that n(k) {', .} is differentiable with respect to
both arguments. That assumption is justified by inspection for MLEM, conjugate­
gradient and many other algorithms, but it may not hold for POCS or other al­
gorithms that employ a clipping operator such as P+ as defined in (15.186). To
get around this difficulty, we can redefine P+{x} as the limit of a differentiable
functional, for example,

w

and thE

P+{x} = xstep(x) = lim \ (3 )
{3->00 1 - exp - x

(15.307)
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