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The first term in equation (3) measures the error between the data y and
the projection of the object function u. This term has the form E(u), where

1
E(u) = 2 II Pu - y 11 2

.

The object function u depends on the coefficients Cj, and the level set func­
tions <PI and <P2 In the following, we derive only the partial derivative with
respect either of these level set functions. To simplify notation, then, denote
either <PI or <P2 by <p. Now, writing J(<p) = E(u), and using the chain rule,
the partial derivative of J with respect to <P is

oj = E'( )ou
o<p u o<p .

The partial derivatives of u respect to <PI and to <P2 are given in equations
(8) and (9). It remains then to find the derivative of E.

For a nonzero vector v, set q(t) = E (u + tv). Then E' (u) is the linear
functional such that q'(O) = E'(u) . v. To find the derivative of q, note first
that

1
q(t) = 2 (Pu - y + tPv, Pu - y + tPv)

where that parentheses denote the inner product associated with the given
norm. We assume here that all the terms are real. Then, writing out this
expression we get

1 1
q(t) = 2 II Pu - y 11 2 +t (Pu - y, Pv) + 2e II Pv 11 2

.

Differentiating this expression with respect to t, and then setting t = 0, we
get

q'(O) = (Pu - y, Pv) = (P*(Pu - y), v)

Thus,
E'(u) . v = (P*(Pu - y), v)
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Returning to the expression above for aJ/a¢, we can think of the partial
dervitive of J with respect to ¢ as

aJ * au
a¢ = P (Pu - y) a¢ .

The second term in equation (3), except for the scalar (3, is the sum of
two terms of the form S(¢) = G(u), where u = H(¢), and again ¢ stands for
either ¢1 or ¢2, and where ,\",)w'I

V1, tv

( [2 2] 1/2
G(u) = In l\lul d

2
r = In (~~) + (~~) d

2
r.

Here we use r to denote the point (x, y) in 2D space.

Using the chain rule, the partial derivative of S with respect to ¢ is

~~ = G'(u)H'(¢) = G'(u)i5(¢) .

where we recall that the derivative of the Heaviside function H is the dirac­
delta function. It suffices to find the derivative of G.

For a nonzero vector v, set q(t) = G(u + tv). Then G'(u) is the linear
functional such that q'(O) = G'(u) . v. To find the derivative of q, note first
that

q(t) J~ j\lu + t\lvl d2r

r [(au av)2 (au av)2] 1/2 2
.J0. ax + t ax + ay + t ay dr.

Differentiating this expression with respect to t, and then setting t = 0, we
get
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-----

Next apply integration by parts to this formula to obtain

To see how this expression comes about, set

1
W = jV'ul V'u ,

and note that

The first integral is zero, since it can written as an integral over the boundary
of fl, and function v is zero on this boundary.

Finally, since u = H(¢), we have V'u = H'(¢)V'¢ = b(¢)V'¢. Substituting
this expression into the formula for q'(O) gives us

Thus, returning to the expression for fJSjfJ¢ above, we can think of the
partial dervitive of S with respect to ¢ as

fJS (1 )fJ¢=V" IV'¢IV'¢ b(¢).

Combining the two partial derivatives above yields formula (7) of the
paper, which is

fJF * fJu (1)- = P (Pu - y)- - (3 V' . -V'¢ b(¢)
fJ¢ fJ¢ IV'¢! .
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