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Key Points to HYPR
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* Data Sparsity/Undersampling - Limited Projections

* Uniformity of Signal Dynamics - This assumption yields the property
that the artifacts are proportional between the limited-projection
image and the corresponding limited-projection image calculated
from the composite and cancel each other out after normalization.

* Bit-reversed ordering of acquiring projections is used.

* Unfiltered backprojection can help limit the artifacts.
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Original HYPR
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, 1 P(r,0,9)

HYPRimage(x,y,z) = — XC(x,y,z) X Yy ———~
ge(x,y,z) N (X.,2) Zamaw

N, - Number of limited projections in the time frame

C(x,y,z) - Time -averaged composite image
P(r,0,0) - Unfiltered backprojection of a certain raw projection

P (r,0,9) - Unfiltered backprojection of the corresponding projection from the composite image

*As the number of limited projections increases to equal the total
number of projections,

the HYPR image 1s equivalent to the composite image.

*This equation leads to constraints in the denominator. If there are
pixels with a value of

zero, or near zero, it can lead to artifacts in the HYPR image.
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Wright HYPR
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ZP(r,G,(p)

HYPRimage(x,y,z) = C(x,y,z) X
ge(x,y,z) = C(x,y,2) Y B.(r00)

C(x,y,z) - Time -averaged composite image
P(r,0,0) - Unfiltered backprojection of a certain raw projection

P (r,0,9) - Unfiltered backprojection of the corresponding projection from the composite image

As the number of limited projections increases to equal the total number of projections,
P(r,0,
2.P(roe) .

Y P.(r0.0)
Then HYPRimage = C(x,y,z)

*In other words, as the number of limited projections increases to the
number of projections of the composite image, the ratio of the sums is
one and the HYPR image is equivalent to the composite image.
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Simulation
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temporal profile of B-projection HYPR
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Simulation

Less sparse than previous
simulation.

Two arteries and two veins
closer together than previous
simulation, wveins larger than
arteries.

Arterial signals increased
earlier than venous signals

HYPR picks up venous intensity
early and has a lower arterial
intensity.

HYPR detects venous intensity
for the arterial image.

HYPR
of P25 - P32

composite
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temporal profile of 8-projection HYPR

n

120} I e True Astenal ]
P = = = T Vanous
I ——— HYPA Arlerial
B % = = = HYPR Venous|
L L —
[ 1wy
é“ d i Lay
s b J L4
= 8oy - oy
a W, -
'E ‘\_\_ S o
= 80| AR LS e e
o
| =
ﬁ 4nt
2t ff
[ L - — e —e
20 40 &0 a0 100 120
a Time (in number of projections)

spatial profile of HYPR P25-P32

150 5 4
w— PR 0 P25 P32
= = = COmpasila
Tron
=
EMopt
Py
c
@
2
=
o |
c
8 g et
" 1 'I
' 1
: 1
: 3
D —-‘——--'-—“'M—“’] L-IJ IL......]...........:....I...rn.q.r

Department'of Mathematics

Page 6

Department'of Mathematics

Califor

nia State University, Fullerton California State University, Fullerton

California State University, Fullerton California State University, Fullerton



Simulation
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* Same dynamics as previous simulation.
* HYPR detects venous intensity for the arterial image.

* Sliding window reconstruction is applied for updating one projection for
each HYPR reconstruction.

* As the number of projections is reduces, the greater the fluctuations in
intensity.
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Background Tissue Signals o
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termporal profile of 8-projection HYPR
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Signal-to-Noise Ratio _ _ o
COLLEGE OF MATURAL SCIENCES & MATHEMATICS

* Filtered backprojection applied to limited-projection images produces a SNR
that is significantly lower than that of the composite image.

* Unfiltered backprojection produces a higher SNR than filtered backprojection.

* The SNR of a HYPR image is dominated by the low SNR of the limited projection
image.

Ex ) Assume we have a circular shaped object that we are projecting,
SNR_.— SNR of the composite image

N, — diameter of the object in pixels=5

N, —matrix size of the composite image in pixels=256

N, - number of projections per HYPR group=16

SNR=SNR N JN - =SNR >— /16 SNR (1.25)
- c P C /256 - c\~—*

VNpix
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Findings
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* In Original HYPR, there is need to avoid the pixels that are zero
(or near zero), these cause artifacts (spikes) in the HYPR image
when the projections are normalized.

* In Wright HYPR, this is avoided since the denominator is the sum of
a number of projections. The likelihood of zeros in the denominator
is reduced.

* The number of acquisitions taken using bit-reversed ordering must
be a power of 2.

* Large vessels cause signal interference to small vessels in HYPR,
especially when the vessels are close to each other.

* Since this is a sparse data set, the interference of the nonuniform
dynamics is relatively minor in terms of the overall image
contrast.
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