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1 Problem 8 page 362 section 6.3
problem:

Consider the problem of minimizing the functional J (u) =
∫
Ω

L(x,u,∇u)dx over all u ∈C2 (Ω) with

u(x) = f (x) at boundary Γ where f is a given function. Ω is bounded and well behaved in R2.
(a) Show that the first variation is (Where L below is meant to be L(x,u,∇u) ) where x is the vectorx1

x2


δJ (u,h) =

∫
Ω

Luh+L∇u ·∇h dA

=
∫
Ω

(Lu−∇·L∇u)h dA −
∫
Γ

hL∇u ·n ds

Where L∇u is the vector


L(

∂u
∂x1

)
L(

∂u
∂x2

)

=


∂L

∂

(
∂u

∂x1

)
∂L

∂

(
∂u

∂x2

)

 and h ∈C2 (Ω) with h(x) = 0 at the boundary Γ

(b)Show that the necessary condition for u to minimize J is that u must satisfy the Euler equation
Lu−∇·L∇u = 0, x ∈Ω

(c)If u is not fixed on the boundary Γ find the natural boundary conditions.
Answer
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(a)

J (u) =
∫
Ω

L(x,u,∇u)dA

J (u+ th) =
∫
Ω

L(x,u+ th,∇(u+ th))dA

=
∫
Ω

L(x,u+ th,∇u+ t∇h) dA

Hence

dJ (u+ th)
dt

=
d
dt

∫
Ω

L(x,u+ th,∇u+ t∇h) dx

=
∫
Ω

∂L
∂ (u+ th)

h+
(

∂L
∂ (∇u+ t∇h)

·∇h
)

dx

But δJ (u,h) = limt→0
dJ(u+th)

dt , hence at t = 0 the above becomes

δJ (u,h) =
∫
Ω

∂L
∂u

h+
(

∂L
∂ (∇u)

·∇h
)

dA (1)

But ∇u =

 ∂u
∂x1

∂u
∂x2

, hence ∂L
∂ (∇u) =


∂L

∂

(
∂u

∂x1

)
∂L

∂

(
∂u

∂x2

)

, and ∇h =

 ∂h
∂x1

∂h
∂x2

, therefore
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∂L
∂ (∇u)

·∇h =


∂L

∂

(
∂u

∂x1

)
∂L

∂

(
∂u

∂x2

)


T  ∂h

∂x1

∂h
∂x2


=

∂L

∂

(
∂u
∂x1

) ∂h
∂x1

+
∂L

∂

(
∂u
∂x2

) ∂h
∂x2

= Lux1
hx1 +Lux2

hx2

Hence (1) becomes

δJ (u,h) =
∫
Ω

Luh+
(

Lux1
hx1 +Lux2

hx2

)
dA (2)

Now
∂

∂xi

(
Luxi

h
)
=

∂Luxi

∂xi
h+Luxi

hxi

Hence

Luxi
hxi =

∂

∂xi

(
Luxi

h
)
−

∂Luxi

∂xi
h

Hence substitute the above in (2) for i = 1,2 we obtain

δJ (u,h) =
∫
Ω

Luh+

(
∂

∂x1

(
Lux1

h
)
−

∂Lux1

∂x1
h+

∂

∂x2

(
Lux2

h
)
−

∂Lux2

∂x2
h

)
dA

=
∫
Ω

(
Lu−

∂Lux1

∂x1
−

∂Lux2

∂x2

)
h dA+

∫
Ω

(
∂

∂x1
Lux1

+
∂

∂x2
Lux2

)
h dA (3)

Now using Green theorem, where∫
Ω

(
∂Q
∂x1
− ∂P

∂x2

)
dx1dx2 =

∫
Γ

Pdx1 +Qdx2

Let Q≡ Lux1
h,P≡−Lux2

h, hence Green theorem becomes∫
Ω

(
∂

∂x1
Lux1

+
∂

∂x2
Lux2

)
h dx1dx2 =

∫
Γ

(
−Lux2

dx1 +Lux1
dx2

)
h

Substitute the above into second term in (3) we obtain (noting that dA = dx1dx2 since we are in R2)

δJ (u,h) =
∫
Ω

(
Lu−

∂Lux1

∂x1
−

∂Lux2

∂x2

)
h dA+

∫
Γ

(
Lux1

dx2−Lux2
dx1

)
h (4)

But the second integral above can be rewritten as (by dividing and multiplying by ds)
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∫
Γ

(
Lux1

dx2−Lux2
dx1

)
h≡

∫
Γ

(
Lux1

dx2

ds
−Lux2

dx1

ds

)
h ds

Hence (4) becomes

δJ (u,h) =
∫
Ω

(
Lu−

∂Lux1

∂x1
−

∂Lux2

∂x2

)
h dA+

∫
Γ

(
Lux1

dx2

ds
−Lux2

dx1

ds

)
h ds (5)

Now Tangent vector at the boundary at point (x1,x2) is given by vector
(

dx1
ds ,

dx2
ds

)T
, hence the

normal is n =
(

dx2
ds ,−

dx1
ds

)T
(since if we take dot product of these 2 vectors we get zero). Now we can

rewrite the integrand in the second integral in (5) in terms of this normal vector since

Lux1

dx2

ds
−Lux2

dx1

ds
=

Lux1

Lux2


T  dx2

ds

−dx1
ds



=

Lux1

Lux2

 ·n
= L∇u ·n

Substitute the above into the second term of (5) we obtain

δJ (u,h) =
∫
Ω

(
Lu−

∂Lux1
∂x1
−

∂Lux2
∂x2

)
h dA+

∫
Γ

h(L∇u ·n) ds

Final note on the sign before the second integral above. The book shows it as ”− ”. I think this is
because the normal should be pointing outside? Hence if we make out normal the negative of the normal
used here (which I think points inwards), we obtain the result we are asked to show for part (a). (notice,
the book has a mistake/typo, it says

∫
Γ

h(L∇u ·n) dA instead of
∫

Γ
h(L∇u ·n) ds, i.e. the integration is

over a line segment, not over a differential area (since obviously this is contour integration).
part (b)
Necessary condition for minimum is that δJ (u,h) = 0,. ie.

∫
Ω

(
Lu−

∂Lux1

∂x1
−

∂Lux2

∂x2

)
h dA−

∫
Γ

h(L∇u ·n) ds = 0

Now consider the second integral in the above. Since h = 0 on Γ, hence we are left to show that

∫
Ω

(
Lu−

∂Lux1

∂x1
−

∂Lux2

∂x2

)
h dA = 0
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But h is arbitrary function, hence by lemma 3.13 again, we argue that for the above to be zero, then

Lu−
∂Lux1

∂x1
−

∂Lux2

∂x2
= 0

Lu−∇ ·L∇u = 0 on x ∈Ω

Which is Euler-Lagrange equation.
Part (c)
Here we have free boundary conditions. Hence we can not take h = 0 everywhere on Γ. Starting

with the first variation

δJ (u,h) =
∫
Ω

(
Lu−

∂Lux1

∂x1
−

∂Lux2

∂x2

)
h dA−

∫
Γ

h(L∇u ·n) ds = 0

Since h 6= 0 on Γ then by lemma 3.13 we can argue that L∇u ·n = 0 on Γ

Hence on R2, this means

Lux1

Lux2


T  dx2

ds

−dx1
ds

= 0, i.e.

Lux1

dx2

ds
−Lux2

dx1

ds
= 0

Now we need to know the shape of the boundary to evaluate the above at each point. For example,

for a circle, n =

x1

x2

 and the above become

Lux1
x1−Lux2

x2 = 0

And the above equation needs to be satisfied at each point on the boundary after discretization.
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