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1 Problem 1 (section 3.5, 5(b), page 185)
problem: Find extrermals for the following functional:

(b) J (y) =
∫ 3

0 e2x (y′2− y2)dx
y(0) = 1,y(3) =free
Solution:

L
(
x,y,y′

)
= e2x (y′2− y2)

Starting from first principles. First the preliminary standard setup:
Let J : (A⊂V )→ R, where A is the set of admissible functions, and V : C2 [a,b], hence A =

{y ∈V : y(a) = 0,y(b) = free}
Let v(x) be the set Ad (y) of the permissible directions defined as Ad (y) = {v ∈V : y+ tv ∈ A} for

some real scalar −ξ < t < ξ

And Ly (x,y,y′)≡ ∂L
∂y L(x,y,y′) and Ly′ (x,y,y′)≡ ∂L

∂y′L(x,y,y
′)

Now we write

δJ (y,v) =
d
dt

J (y+ tv) |t=0

=
∫ b

a
Ly
(
x,y,y′

)
v+Ly′

(
x,y,y′

)
v′ dx (see 3.14 in book)

Therefor a necessary condition for y(x) ∈ A to be a local minimum for the functional J (y) is that
δJ (y,v) = 0 for all v ∈ Ad , which means
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∫ b

a
Ly
(
x,y,y′

)
v+Ly′

(
x,y,y′

)
v′ dx = 0

Integrating by parts the second term above results in the general expression for the necessary
condition for y(x) to be a local minimum for J (y), which is∫ b

a

{
Ly
(
x,y,y′

)
− d

dx
Ly′
(
x,y,y′

)}
v dx+

[
Ly′
(
x,y,y′

)
v
]b

a = 0 (see 3.15 in text)

Since v(a) = 0, the second term above simplifies, and the above equation becomes∫ b

a

{
Ly
(
x,y,y′

)
− d

dx
Ly′
(
x,y,y′

)}
v dx+Ly′

(
b,y(b) ,y′ (b)

)
v(b) = 0 (1)

Now we apply the following argument: Out of all functions v ∈ Ad , we can find a set which has the
property such that v(b) = 0. For these v′s only (1) becomes∫ b

a

{
Ly
(
x,y,y′

)
− d

dx
Ly′
(
x,y,y′

)}
v dx = 0

Where now we apply the other standard argument: Since the above is true for every arbitrary v (but
remember now v is such that v(b) = 0, but since there are so many such v′s still, then the argument still
holds) , then it must mean that

Ly
(
x,y,y′

)
− d

dx
Ly′
(
x,y,y′

)
= 0 (2)

This will generate a second order ODE, which we will solve, with the boundary conditions y(0) = 1
But we need another boundary condition. Then we hold off solving this for one moment. Let us

now consider those functions v ∈ Ad which have the property that v(b) 6= 0. For these v’s, and for the
second term in (1) to become zero, we now must have

Ly′
(
b,y(b) ,y′ (b)

)
= 0 (3)

Now from (3) we have ∂L
∂y′ =

∂

∂y′ e
2x (y′2− y2)= 2e2xy′, which means

2e2xy′|x=b = 0

2e2by′ (b) = 0

Hence

y′ (b) = 0

This gives us the second boundary condition we needed to solve (2).
Hence to summarize the problem becomes that of solving for y given

Ly
(
x,y,y′

)
− d

dx
Ly′
(
x,y,y′

)
= 0

with the boundary conditions y(0) = 1 and y′ (3) = 0
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Now (2) can be written as

∂

∂y
e2x (y′2− y2)− d

dx

(
2e2xy′

)
= 0

−2e2xy−2
(
2e2xy′+ e2xy′′

)
= 0

−2y−4y′−2y′′ = 0

Hence

y′′+2y′+ y = 0 y(0) = 1, y′ (3) = 0

Assume y = Aemx , hence the characteristic equation is m2 + 2m+ 1 = 0→ m = −b±
√

b2−4ac
2a =

−2±
√

4−4
2 = −1

Since we have repeated root, then the solution is

y(x) = c1e−x + c2xe−x

When x = 0 , y = 1, hence c1 = 1

y′ (x) =−e−x + c2
(
e−x− xe−x)

when x = 3,y′ = 0, hence 0 =−e−3 + c2
(
e−3−3e−3)→ c2 =− e−3

e−3(2) → c2 =−1
2

Hence the solution is

y(x) = e−x− 1
2

xe−x

or

y(x) = e−x (1− 1
2x
)
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2 Problem 2 (section 3.5,#6, page 185)
problem: determine the natural boundary condition at x = b for the variational problem defined by
J (y) =

∫ b
a L(x,y,y′)dx+G(y(b)) where y ∈C2 [a,b] ,y(a) = y0 and G is a given differentiable function

on R
Solution:
Starting from first principles, first the preliminary standard setup.
Let J : (A⊂V )→ R, where A is the set of admissible functions, and V : C2 [a,b] Hence A =

{y ∈V : y(a) = 0,y(b) = f ree} .Let v(x) be a set Ad (y) of permissible directions defined as Ad (y) =
{v ∈V : y+ tv ∈ A} for some real scalar−ξ < t < ξ , and Let Ly (x,y,y′)≡ ∂L

∂y L(x,y,y′), and Ly′ (x,y,y′)≡
∂L
∂y′L(x,y,y

′)
Now we write

δJ (y,v) =
d
dt

J (y+ tv) |t=0

=
∫ b

a
Ly
(
x,y,y′

)
v+Ly′

(
x,y,y′

)
v′ dx+

d
dt

G(y(b)+ tv(b)) |t=0

=
∫ b

a
Ly
(
x,y,y′

)
v+Ly′

(
x,y,y′

)
v′ dx+ v(b)G′ (y(b))

Therefor a necessary condition for y(x) ∈ A to be a local minimum for J (y) is that δJ (y,v) = 0 for
all v ∈ Ad , which means(∫ b

a
Ly
(
x,y,y′

)
v+Ly′

(
x,y,y′

)
v′ dx

)
+ v(b)G′ (y(b)) = 0

Integrating the second term in the integral above by parts results in the general expression for the
necessary condition for y(x) to be a local minimum for J (y), which is∫ b

a

{
Ly
(
x,y,y′

)
− d

dx
Ly′
(
x,y,y′

)}
v dx+

[
Ly′
(
x,y,y′

)
v
]b

a + v(b)G′ (y(b)) = 0

Hence

∫ b

a

{
Ly
(
x,y,y′

)
− d

dx
Ly′
(
x,y,y′

)}
v dx+

Ly′
(
b,y(b) ,y′ (b)

)
v(b)−Ly′

(
a,y(a) ,y′ (a)

)
v(a)+ v(b)G′ (y(b)) = 0

Since y(a) = y0, we must have v(a) = 0, then the above simplifies to

∫ b

a

{
Ly
(
x,y,y′

)
− d

dx
Ly′
(
x,y,y′

)}
v dx+

{
Ly′
(
b,y(b) ,y′ (b)

)
+G′ (y(b))

}
v(b) = 0 (1)

Let us now consider those functions v ∈ Ad which have the property that v(b) 6= 0. For these v’s, for
the second term in (1) to become zero, we now must have

Ly′
(
b,y(b) ,y′ (b)

)
+G′ (y(b)) = 0
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Hence

∂L
∂y′

∣∣∣
x=b

=−G′ (y(x))|x=b

Hence the natural boundary condition on y(x) at x = b must satisfy the above. (I do not see how
can one go further without being given what L and G are.)
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