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1 Problem 1 (section 3.3, 2(b), page 175)
problem: Find extrermals for the following functional:

(b)
∫ b

a y2 +(y′)2 +2yex dx
Solution:
Assume first that y(x) has normal conditions on the boundaries. I.e. y(a) = ya,y(b) = yb

L
(
y,y′,x

)
= y2 +

(
y′
)2

+2yex

We have the functional

J (y) =
∫ b

a
L
(
y,y′,x

)
dx

and we seek to find a function y(x) which minimizes this functional.
Let the vector space from which we can pick y(x) from be

V =C2 [a,b]

And let the set of admissible functions (within V ) (Is this set a subspace?) be defined as

A = {y(x) s.t. y(x) ∈V and y(a) = y0,y(b) = y1}

And let the set of admissible directions v(x) be

Ad = {v(x) ∈V s.t. v(a) = 0,v(b) = 0}

Use the variational method since the Lagrangian contains a quadratic terms.
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J (y+ v) =
∫ b

a
L
(
(y+ v) ,(y+ v)′ ,x

)
dx

=
∫ b

a
(y+ v)2 +

(
(y+ v)′

)2
+2(y+ v)ex dx

=
∫ b

a

(
y2 + v2 +2yv

)
+
(
y′+ v′

)2
+2(yex + vex) dx

=
∫ b

a
y2 + v2 +2yv+

(
y′
)2

+
(
v′
)2

+2y′v′+2yex +2vex dx

rearrange terms

J (y+ v) =

J(y)︷ ︸︸ ︷∫ b

a
y2 +

(
y′
)2

+2yex +

+ve︷ ︸︸ ︷
v2 +

(
v′
)2

+2yv+2y′v′+2vex dx

J (y+ v) = J (y)+

+ve︷ ︸︸ ︷∫ b

a
v2 +

(
v′
)2 dx+2

make this zero︷ ︸︸ ︷∫ b

a
yv+ y′v′ + vex dx

Hence if we can find ỹ(x) which will make the last term above zero, then J (y) will have been
minimized by this ỹ(x)

Therefor the problem now becomes of solving for y(x) the following integral equation∫ b

a
yv+ y′v′+ vex dx = 0 (1)

We need to try to convert the above into something like
∫ b

a f (y,y′,ex)v(x) dx = 0 so that we can
say that f (y,y′,ex) = 0, so this means in (1) we need to do integration by parts on the term y′v′. Hence
(1) can be written as ∫ b

a
yvdx+

∫ b

a
y′v′dx+

∫ b

a
vex dx = 0

Now since
∫

u dz = [uz]ba−
∫ b

a z du, now let u = y′→ du = y′′, and let dz = v′dx→ z = v, hence we
have ∫ b

a
y′v′dx =

0︷ ︸︸ ︷[
y′v
]b

a−
∫ b

a
vy′′ dx

Hence (1) can be written as

0 =
∫ b

a
yv+ y′v′+ vex dx

=
∫ b

a
yv− vy′′+ vex dx

=
∫ b

a

(
y− y′′+ ex)v dx
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Now we apply the standard argument and say that since v(x) is arbitrary function, and the integral
above is always zero, then it must be that (

y− y′′+ ex)= 0

or

y′′− y = ex

This is a linear second order ODE with constant coefficients with a forcing function. The homoge-
neous ODE will have 2 independent solutions, say y1 (t) and y2 (t), so the total solution is

y = yh (x)+ yp (x)
= c1y1 (x)+ c1y2 (x)+ yp (x)

To solve the homogeneous ODE
y′′− y = 0

Assume the solution is y = Aemx, hence the characteristic equation is m2−1 = 0→ m =±1, hence
the solution is y1 (x) = ex,y2 (x) = e−x, so

yh (t) = c1y1 + c2y2

= c1ex + c2e−x

Or the solution can be written in hyperbolic sin and cosine

yh (t) = c1 cosh(x)+ c2 sinh(x)

Now to find particular solution, use variation of parameters. Assume

yp =−y1u1 + y2u2

where

u1 =
∫ y2ex

W
dx

u2 =
∫ y1ex

W
dx

Where

W = y1y′2− y2y′1 =−exe−x− e−xex

=−1−1
=−2

Hence
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u1 =−
1
2

∫
e−xexdx

=−1
2

∫
dx

=−1
2

x

and

u2 =−
1
2

∫
exexdx

=−1
2

∫
e2xdx

=−1
4

e2x

Hence the solution is

y = c1ex + c2e−x + yp

= c1ex + c2e−x +(−u1y1 +u2y2)

= c1ex + c2e−x +

(
1
2

xex +−1
4

e2xe−x
)

Hence

y(x) = c1ex + c2e−x + 1
2xex− 1

4ex
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2 Problem 1 (section 3.3,#10, page 176)
problem: Show that the minimal area of a surface of revolution in a catenoid, that is, the surface found
by revolving a catenary

y = c1 cosh
(

x+ c2

c1

)
about the x axis
solution:
First we assume that y′ (x)> 0 over the integration range. And that the lower end of the integration

x = a is smaller than the upper limit x = b
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If we view a small ds at y(x) we see that it has a length of

ds2 = dy2 +dx2

Hence

ds =
√

dy2 +dx2

ds = dx

√(
dy
dx

)2
+1 (1)

or we can also write

ds =
√

dy2 +dx2

ds = dy

√(
dx
dy

)2
+1 (2)

So there are 2 ways to solve this depending if we use (1) or (2). Let us leave the choice open for a
little longer.

Now a size of a differential area dA of a strip of width ds and a length given by the circumference of
the circle generated by rotation is

dA = 2πy(x)ds

Hence the total surface area is the integral of the above over the range which y(x) is defined at. Let
this be from x = a,to x = b is given by

A =
∫ x=b

x=a
dA

= 2π

∫ x=b

x=a
y(x)ds

Since we have y(x) already in the Lagrangian, let then pick expression (2) from the above.

A = 2π

∫ x=b

x=a
y(x)

√(
dx
dy

)2

+1dy

Now I need to change the limits. Let y(a) = y1, and let y(b) = y2 hence

A = 2π

∫ y=y(b)

y=y(a)
y(x)

√(
dx
dy

)2

+1dy

If we write the above in the more standard format, we have

7



A = 2π

∫ y=y(b)

y=y(a)
y(x)

√
1+(x′)2dy

= 2π

∫ y=y(b)

y=y(a)
L
(
y,x(y) ,x′ (y)

)
Remember now that y is the independent variable, and x is the dependent variable. This is different

from the normal way.
Hence the Lagrangian L is

L
(
y,x,x′

)
= y
√

1+(x′)2 (3)

If I had picked expression (1) instead, I would have obtained the Lagrangian as

L
(
x,y,y′

)
= y
√

1+(y′)2 (4)

Both will give the same answer but with (3) we have ∂L
∂x −

d
dy

(
∂L
∂x′

)
= 0 and the first term ∂L

∂x = 0

since L does not depend on x, and now we can just say that ∂L
∂x′ =constant,. While with (4) we have

∂L
∂y −

d
dx

(
∂L
∂y′

)
= 0 now ∂L

∂y is not zero.
Now we continue, and we will use (3) as our lagrangian.
We start the solution of the problem. We seek a function x̃(y) which minimizes J (x)=

∫ y=y(b)
y=y(a) L(y,x,x′)dy.

Where x̃(y) ∈V s.t. C2 [a,b], and let the set of admissible functions
A(x(y)) = {x(y) |x ∈V and x(a) = x1,x(b) = x2},
and let the set of admissible directions v(y) = {v(y) |v ∈V and v(a) = 0 and v(b) = 0}
Now that we have written down all the formal definitions, we can just solve this by applying

Euler-Lagrange equation since the Lagrangian above meets the conditions of using Euler-Lagrange
equations (L is a function of x,x′,y and x is defined at the boundary conditions with a dirichlet type
boundary conditions).

The Euler Lagrangian equation is

∂L
∂x
− d

dy

(
∂L
∂x′

)
= 0

Since L does NOT depend on x then ∂L
∂x = 0, and the above reduces to

d
dy

(
∂L
∂x′

)
= 0

Since the derivative is zero, then we can write that

∂L
∂x′

= c1

Where c1 is some constant. So the above becomes

8



y
2x′

2
√

1+(x′)2
= c1

yx′√
1+(x′)2

= c1

(yx′)2

1+(x′)2 = c2
1

Hence we have

(
yx′
)2

= c2
1

(
1+
(
x′
)2
)

= c2
1 + c2

1
(
x′
)2(

x′
)2 (y2− c2

1
)
= c2

1

Hence the final ODE is

x′ (y) = c1√
(y2−c2

1)

This is a linear ODE Its solution is found by integration both side as follows

∫
x′ (y)dy =

∫ c1√(
y2− c2

1
)dy

x(y) = c1

∫ dy

c1

√(
y
c1

)2
−1

x(y) =
∫ dy√(

y
c1

)2
−1

Let y
c1
= u hence dy= c1du and the above becomes (do not need to worry about limits of integrations,

as I will flip back the earlier variable in a minute)

x(y) = c1

∫ du√
u2−1

Which from table is given by

x(y) = c1 ln
(

u+
√

u2−1
)
+ c2

Where c2 is constant of integration. Hence going back to our variables, we have

x(y) = c1 ln

(
y
k
+

√(y
k

)2
−1

)
+ c2 (3)
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From tables I found that cosh−1 (z) = ln
(

z+
√

z2−1
)

Hence (3) can now be written as

x(y) = c1 cosh−1
(y

k

)
+ c2

x(y)− c2

c1
= cosh−1

(
y
c1

)
Or

y
c1

= cosh
(

x− c2

c1

)
Then

y(x) = c1 cosh
(

x−c2
c2

)
So the above curve will minimize the surface area.
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Problem 1 (section 3.3,#14, page 177)

answer:
y(0) = Y,y(T ) = 0

E =
∫ T

0
e−β tU (r (t))dt

but
r (t) = αy− y′
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Hence

E =
∫ T

0
e−β tU

(
αy(t)− y′ (t)

)
dt

Hence the Lagrangian is

L(t,y,y′) = e−β tU (αy(t)− y′ (t))

since y(t) is defined at boundaries of the interval, we can use Euler-Lagrange equations

d
dy

L
(
t,y,y′

)
− d

dt

(
d

dy′
L
(
t,y,y′

))
= 0

Now the first term above is

d
dy

L
(
t,y,y′

)
= e−β tU ′

d
dy

(
αy(t)− y′ (t)

)
= αe−β tU ′

and the second term is

d
dt

(
d

dy′
L
(
t,y,y′

))
=

d
dt

(
e−β tU ′

d
dy′
(
αy(t)− y′ (t)

))
=

d
dt

(
−e−β tU ′

)
Hence our E-L equations now looks like

αe−β tU ′+
d
dt

(
e−β tU ′

)
= 0 (1)

Since U is a function of r (t), then

d
dt

(
e−β tU ′

)
=−βe−β tU ′+ e−β tU ′′r′ (t)

And (1) now becomes

αe−β tU ′−βe−β tU ′+ e−β tU ′′r′ (t) = 0
(α−β )U ′+U ′′r′ (t) = 0

This is separable ODE, hence

U ′′

U ′
dr
dt

=−(α−β )

U ′′

U ′
dr =−(α−β )dt
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Integrate both sides

ln
(
U ′ (r)

)
=−(α−β )

∫
dt

ln
(
U ′ (r)

)
=−(α−β ) t + k

where k is constant on integration

U ′ (r) = e−(α−β )t+k

= ce−(α−β )t

where c = ek is another constant
But U (r) = 2

√
r hence dU

dr = 1√
r and the above becomes

1√
r
= ce−(α−β )t

1
r
= c2e−2(α−β )t

r (t) = c2e2(α−β )t

Where since c−2 is constant, I call it c2
Now, Since

y′ (t) = αy(t)− r (t)

Then

y′ (t)−αy(t) = c2e2(α−β )t

The solution is
y = yh + yp

Assume yh = Aemt , hence Amemt−αAemt = 0→ m = α

So the solution is
yh = c1eαt

For the particular solution, guess a solution. Since the forcing function is of the form cet , guess

yp = Aekt

so y′p = Atekt and we substitute this solution in the ODE above, we obtain

Akekt−αAekt = c2e2(α−β )t

A(k−α)ekt = c2e2(α−β )t
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so by comparing exponents, we see that k = 2(α−β ) and A(k−α) = c2 hence A = c2
k−α

=
c2

2(α−β )−α
= c2

α−2β

Therefore
yp =

c2

α−2β
e2(α−β )t

Hence, since
y = yh + yp

Then

y(t) = c1eαt + c2
α−2β

e2(α−β )t

We now find c1 and c2 from I.C. At t = 0,y = Y , hence

Y = c1 +
c2

α−2β

c1 = Y − c2

α−2β
(2)

at t = T,y = 0, hence

0 =

(
Y − c2

α−2β

)
eαT +

c2

α−2β
e2(α−β )T

c2 =
(α−2β )YeαT

eαT − e2(α−β )T

so from (2)

c1 = Y − (α−2β )YeαT

(α−2β )
(
eαT − e2(α−β )T

)
Hence

y(t) =
(

Y − (α−2β )YeαT

(α−2β )(eαT−e2(α−β )T)

)
eαt + (1−α+2βY )e(−α+2β )T

α−2β
e2(α−β )t

and

r (t) = (1−α +2βY )e(−α+2β )T e2(α−β )t

Analysis on results:
These are 3 plots showing y(t) and r (t). The first is for α = 0.03
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This one is for α = 0.1

We notice that the higher the interest rate α is the more capital will accumulate, which means to
achieve the goal of zero capital at death the rate r (t) is more steep near the end. If the money hardly
accumulate during life time, i.e. when the interest rate is very low, then we should expect a straight line
for y(t), which is verified by this plot below when I set α = 0.001
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