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1 Problem 6 page 346 section 6.2 (PDE’s)
problem:

A fluid having density ρ , specific heat C, and heat conductivity K, flows at a constant velocity V in
a cylindrical tube of length L, and radius R. The temperature at position x is T = T (x, t) and diffusion
of heat is ignored. As it flows, heat is lost though the lateral side at a rate jointly proportional to the
area and to the difference between the temperature Te of the external environment and the temperature
T (x, t) of the fluid (Newton’s law of cooling). Derive a PDE model for the temperature T (x, t)

Find the general solution of the equation by transforming to a moving coordinates system z =
x−Vt,τ = t

Answer:

Term Definition Units (SI)

heat conductiv-
ity K

The quantity of heat that passes in unit time through unit area
of a substance whose thickness is unity, when its opposite
faces differ in temperature by one degree

ML
T 3θ

Specific heat C the amount of heat needed to raise a unit mass by one degree. L2

T 2θ

Density ρ density M
L3
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First we need to decide on the quantity over which we are applying the balance equation over. We
solve this problem 2 times. The first by using the amount of heat as the quantity. Next we solve the
problem by using the density of heat as the quantity.

Using amount of heat as the quantity to apply
balance equation on

Apply the energy balance equation. Consider 2 cross sectional area at x = a,x = b.
Total amount of heat inside this volume = mass of fluid inside this volume × specific heat × its

temperature T (x, t)
Hence amount of heat between x = a,x = b is

∫ b

a

volume︷ ︸︸ ︷
πr2dxρ︸ ︷︷ ︸

mass

cT (x, t)


Now consider the rate that heat flows in/out the volume between x = a and x = b, this is given by

Ax=aJ (a, t)−Ax=bJ (b, t)

and since the area does not change, this is the same as

A(J (a, t)− J (b, t))

where J (x, t) is the amount of heat that flows though a unit area per unit time. (the Flux)
Now there is some heat loss due to cooling via the lateral side. Use Newton law of cooling which

says that the amount of heat a body loses per second is proportional to temperature difference between
it and its surrounding temperature, and proportional to the area of the body though which heat is lost.
The constant of proportionality is k. The area of the body in this case is the surface of the cylinder of
strip of width dx which is given by dx(2πr) when considering a differential length.
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Hence lateral heat loss rate between x = a and x = b is
[
−
∫ b

a k dx(2πr)(T (x, t)−Te)
]
. The minus

sign is to say that this is considered to be a heat loss, not gain, into the volume under consideration. Now
need to find what the units of this k is (this is NOT the heat conductivity coefficient). Using dimensional
analysis, we write

[rate o f heat] = [k]
[
L2] [θ ]→ [k] = [rate o f heat]

[L2][θ ]
= [heat]

[L2][θ ][T ]
=

[
M L2

T 2

]
[L2][θ ][T ]

= [M]

[θ ][T 3]

So to obtain the energy balance we write

d
dt

∫ b

a
πr2cρT (x, t)dx = A(J (a, t)− J (b, t))−

∫ b

a
k dx(2πr)(T (x, t)−Te)

Move the differentiation inside and assuming constant density throughout

πr2cρ

∫ b

a

∂

∂ t
T (x, t)dx = πr2 (J (a, t)− J (b, t))−2πrk

∫ b

a
(T (x, t)−Te)dx

rcρ

∫ b

a

∂

∂ t
T (x, t)dx = r (J (a, t)− J (b, t))−2k

∫ b

a
(T (x, t)−Te)dx

Now apply fundamental law of calculus to the flux term in the RHS we have

rcρ

∫ b

a

∂

∂ t
T (x, t)dx = r

(∫ a

b

∂

∂x
J (x, t)dx

)
−2k

∫ b

a
(T (x, t)−Te)dx

Changing the limits of integration on the RHS to make it match the LHS and canceling A we obtain

rcρ

∫ b

a

∂

∂ t
T (x, t)dx =−r

∫ b

a

∂

∂x
J (x, t)dx−2k

∫ b

a
(T (x, t)−Te)dx
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Because the above holds for all intervals of integration and the functions involved are continuous,
then we can remove the integrals and just write

rcρ
∂

∂ t
T (x, t) =−r

∂

∂x
J (x, t)−2k (T (x, t)−Te)

For flux, consider the advection model, hence J (x, t) =Vu(x, t) where u(x, t) is amount of heat per
unit volume at x, but this is the same as ρcT (x, t), hence ∂

∂xJ (x, t) = ∂

∂xV ρcT (x, t) =V ρcTx (x, t) since
V is constant, then the above becomes

rcρ
∂

∂ t
T (x, t) =−rV ρcTx (x, t)−2k (T (x, t)−Te)

rcρTt =−rV ρcTx−2k (T −Te)

Hence the PDE is

Tt (x, t)+V Tx (x, t)+ 2k
rcρ

T (x, t) = 2k
rcρ

Te

Let me check dimensionality. Each term above should have the same units.
Tt has units

[
θ

T

]
V Tx has units

[ L
T

θ

L

]
=
[

θ

T

]
2k
rcρ

T has units

[
M

T 3θ
θ

L L2

T 2θ

M
L3

]
=
[

θ

T

]
Hence the PDE is dimensionality correct. Now I have more confidence it is correct. Now we solve

the same problem by using the density of heat.

Using density of amount of heat as the quantity
to apply balance equation on

density of heat is cρT (x, t), hence rate of change of density of heat is d
dt cρT (x, t)

For the flux term, using the advection model, we obtain that

J (x, t) =V (density of heat flow though unit area)
=V cρT (x, t)

Hence
Jx (x, t) =−V cρTx (x, t)

Now for heat loss,

f =
(2πr dx)k (T −Te)

πr2 dx

=
2k (T −Te)

r

Hence the balance equation now becomes
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d
dt

cρT (x, t) =−V cρTx (x, t)−
2k (T −Te)

r
Hence

Tt (x, t)+V Tx (x, t)+ 2k
cρr T (x, t) = 2k

cρr Te

Which matches the results obtained earlier.
Now complete the problem. Find a general so-

lution.
Let z = x−Vt,τ = t,Hence

∂x
∂τ

=
∂ (z+V τ)

∂τ

=V

and
∂ t
∂τ

= 1

Let W (z,τ)≡ T (x, t) = T (z+V τ,τ), therefore

Wτ (z,τ) =
∂T (x, t)

∂x
∂x
∂τ

+
∂T (x, t)

∂ t
∂ t
∂τ

Wτ (z,τ) = Tx (x, t)V +Tt (x, t)

But from the PDE itself which we derived above, we see that Tx (x, t)V +Tt (x, t) =−2k(T−Te)
r ,Hence

Wτ (z,τ) =−2k
r [T (z+V τ,τ)−Te]

Integrating over time we obtain

W (z,τ) =
∫ t

0
−2k

r
[T (z+V τ,τ)−Te] dτ +g(z)

For an arbitrary function g(z), Substituting back for z = x−Vt and τ = t we obtain

T (x, t) =
∫ t

0
−2k

r
(T ((x−Vt)+V τ, t)−Te)dτ +g(x−Vt)

=
∫ t

0
−2k

r
(T (x+V (τ− t) , t)−Te)dτ +g(x−Vt)

Hence general solution is

T (x, t) = −2k
r
∫ t

0 [T (x+V (τ− t) , t)−Te]dτ +g(x−Vt)

The function g(·) can be found from initial conditions that specific T (x,0)
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2 Problem 6 page 372 section 6.3
problem:

Prove that if the Dirchlet problem

−∇2u = λu x ∈Ω

u = 0 x ∈ ∂Ω

has nontrivial solution then the constant λ must be positive.
solution:
Using Green first identity,∫

Ω

u∇
2w dx+

∫
Ω

∇u ·∇w dx =
∫

∂Ω

u
du
dn

dA

Let w = u in the above ∫
Ω

u∇
2u dx+

∫
Ω

‖∇u‖2 dx =
∫

∂Ω

u
du
dn

dA

But
∫

∂Ω
u du

dndA = 0 since u = 0 on ∂Ω, hence∫
Ω

u∇
2u dx =−

∫
Ω

‖∇u‖2 dx

Now ∇2u =−λ from the PDE itself, hence the above becomes

−λ

∫
Ω

u2 dx =−
∫

Ω

‖∇u‖2 dx

λ

∫
Ω

u2 dx =
∫

Ω

‖∇u‖2 dx

The integral in the RHS is ≥ 0
Consider the case if the integral in the RHS is zero. This implies that ‖∇u‖ = 0. But ‖∇u‖ is a

norm of a vector. (this vector being the gradient of the scalar field function u(xi)). The only way
for a norm of a vector to be zero is for the vector itself to be zero. For example, look at n = 2,

∇u(x1,x2) =
∂u
∂x i+∂u

∂y j→ ‖∇u(x1,x2)‖2 =
(

∂u
∂x

)2
+
(

∂u
∂y

)2
.Since this sum is zero, and we are adding

nonnegative numbers, then this means ∂u
∂xi

= 0, i = 1..n. This implies that u itself is either zero

everywhere, or u is not zero, but ∂u
∂xi

= 0, i.e. u is a constant function w.r.t to each of its independent
variables. But we can’t use the case when u = 0 everywhere since we are looking for nontrivial solution,
hence the other possibility is for u is a constant function w.r.t to each of its independent variables. But
this case also fails, because we are told u = 0 on ∂Ω, and so if it is constant, this means it is zero also
everywhere inside Ω which means the trivial solution again, which we do not like. Hence we conclude
that ‖∇u‖ can NOT be zero. Hence only other option is for it to be strictly positive, i.e.

∫
Ω
‖∇u‖2 dx

must be > 0

Hence λ
∫

Ω
u2 dx= k, where k> 0. But since u is not zero, then

∫
Ω

u2 dx> 0, hence λ is strictly positive
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3 Problem 10 page 373 section 6.3
question:

solution:

Part(a)
Apply balance equation. Using the volume density of the material as the quantity to conserve. There

is no loss in this problem, hence f = 0
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d
dt

∫ b

a
u(x, t)dx = Ja (x, t)− Jb (x, t)

d
dt

∫ b

a
u(x, t)dx =

∫ a

b
Jx (x, t)dx∫ b

a
ut (x, t)dx =−

∫ b

a
Jx (x, t)dx

Hence

ut (x, t) =−Jx (x, t)

Now the flux is made up of 2 parts in this problem, due to advection and due to diffusion. Hence

J (x, t) =−Dux (x, t)−agu(x, t)

Where the minus sign next to the advection term is due to speed being in opposite direction to the
x-axis. Hence the PDE is

ut (x, t) =
∂

∂x
[Dux (x, t)+agu(x, t)]

ut (x, t) = Dux,x (x, t)+agux (x, t)

Part(b)
At steady state, ut (x, t) = 0, hence we obtain

d2u(x)
dx2 +

ag
D

du(x)
dx

= 0

We can solve this by separation of variables. Let y = u′

y′+ ky = 0
1
y

dy =−kdx

lny =−1
2

kx+C

y = Ae
−ag
2D x

Let k = ag
2DSince y = u′

u(x) =
∫

Ae−kxdx+B

Hence

u(x) =−A
k e−kx +B
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We consider that at x = ∞,u = 0, (i.e. since very deep lake, we take x very large)

B = 0

Then

u(x) =−A
k

e−kx

We also know that
∫

∞

0 u(x)dx =U , hence

−A
k

∫
∞

0
e−kxdx =U

A
k2

[
e−kx

]∞

0
=U

A
k
[0−1] =U

−A
k

=U

Hence A =−kU

Hence the solution is

u(x) =−A
k

e−kx

Then

u(x) =Ue−
ag
2D x

To verify, as x→ ∞ we obtain u(x) = 0 and at x = 0, u(x) =U
Note, it does not seem to make too much sense to me that in any tube length, total amount is always

U , for this implies, for some length h that
∫ h

0 u(x)dx =U but
∫ h

0 u(x)dx =
∫ h

0 Ue−kxdx = U
−k

[
e−kx]h

0 =
U
−k

[
e−kh−1

]
Hence U

−k

[
e−kh−1

]
=U which means 1−e−kh

k = 1 or 1−e−kh = k, which means h = − ln(1−k)
k which

at k = 1 blows up. So this means k < 1 , i.e. ag
2D must be < 1.
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