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1 Problem 9 page 346 section 6.2 (PDE’s)

problem:
Find all solutions to the heat equation u; = Kuy, of the form u (x,1) = U (z) where z = ——
answer: \
3 —3
We have that z (x,7) = \/%, hence % = \/LKT and g—iﬁ =0 and a—f =—5(kt) 2k = _7"%
Now
dz
Uy (x7t) = U/ (Z) a
1
=U'(@) VKt
and
" 1 aZ
Uyxx (.X,l) =U (Z) ﬁa
" 1
=U () P

and



Butz = \/%, hence the above becomes

1 "
52U () =U (3)
or

"

U (2)+3z2U'(2) =0

Let U' (z) = y(z) , hence the above becomes

1
y’+ Ezy =0
y _ 1
y o 2"
ldy 1
ydz 2
1 1
—dy=——=zd
y y Kz
Integrate both sides
Iny = ! 24C
Hence
y(@) =4

But since U’ (z) = y(z), then



I think now I need to write the above in terms of x, again. Fix time, and change x and so we have
dz = %dx = \/%dx and the above integral becomes

u(x,t;€) /A

for any & location along the space dimension x, where A (é) ,B(&) are functions that depend on the
value &

—d€+B(<§)



2 Problem 3 page 365 section 6.2 (PDE’s)

problem:
Use the energy method to prove the uniqueness for the problem

u = Vu xeQ,r>0
u(x,0) = f(x) XxeQ
u(x,t)=g(x) X €dQt>0
Solution , , ,
: 2, _d d 27u ; .
First note that V-u = a—x’%‘ + a—x’g + et a—x’g i.e. the Laplacian.

Proof by contradiction. Assume there is no unique solution. Let u; (x,7) and u, (x,7) be 2 different
solutions to the above PDE. Let w (x,) be the difference between these 2 solutions. i.e. w(x,7) =
up (x,1) —uy (x,t), hence w (x,¢) must satisfy the following conditions: it must be zero at the boundaries
x € dQ for all time, and also it must be zero inside Q initially. Hence

X EQ
xe€dQ,r>0

w(x,0) =

, 0
w(x,)=0

Now if we can show that w (x,7) = 0 for t > 0 inside Q, then this would imply that u; (x,7) = up (x,t),
showing a contradiction, hence completing the proof.

i.e. we need to show that w, (x,7) = V2w (x,1) yields a solution w (x,#) = 0 for x € Q. > 0

Using the energy argument, we write

E() :/sz (x,7)dx

First we note that E (0) = Osince w (x,0) = 0 from the initial conditions above.

E (1) :E/sz(x,t)dx
d
= /Q sz (x,1)dx
/2 x1) Lw(x1) dx
= [ 2w =W
o ) at 9
But %w (x,t) = V2w (x,t) from the PDE itself, hence the above becomes

E'(1) :2/Qw(x,t) Vi (x,1) dx (1)

But from Green first identity which states the following

/(uV2w+Vu-Vw)dX:/ u—-dA
Q

Replace u by w in the above, we obtain



d
/ (WV2W+ Vw- Vw) dx = / w—WdA
Q 90 dn

d
/WVZWdX—l-/VW-VWdX:/ w da
Q Q

00 dn
2 dW
/WV de:/ w—dA — | Vw-Vwdx 2)
Q o0 dn Q

Comparing (1) and (2) we see that LHS of (2) is %E’ () Hence the above become

1 dw
—E’t:/ —dA—/V-Vd
5 (1) o dn VW Vw dx

But Vw- Vw = ||[Vw||?, so the above becomes

1 dw
—E’t:/ —A—/ V|
5 (t) agwdnd Q|| w||” dx

But w(x,7) =0 on dQ for ¢ > 0, since this is the boundary conditions. Hence the above becomes
E' (1) = —z/ 1Vw]? dx
Q

Therefore we showed that E’ (¢) is < 0 since [q IVw|* dx >0

So energy inside Q is nonincreasing with time. But since E (0) = 0 then E (¢) = 0 (since energy can
not be negative, this is the only choice left).

Therefore, from E (t) = [, w? (x,t)dx, we conclude that w (x,¢) = 0 everywhere in Q for ¢ > 0 since
w(x,?) is continuous in both its arguments.

Hence we conclude since w (X,7) = uj (X,1) — up (X,1) = 0 then u; (x,¢) = up (x,t), then the PDE
solution is unique.



3 Problem 5 page 365 section 6.2 Conservation laws

problem:

In absence of sources derive the diffusion equation for radial motion in the plane u; = 17) (ru,), from
first principles. That is, take an arbitrary domain between circles r = a,r = b and apply conservation
law for the density u = u (r,t) assuming the flux is J (r,#) = —Du,. Assume no sources.

Answer:

First note that the density u (r,7) is measured in quantity per unit volume.

Consider a cross sectional area through circle r, = a. This area is 2whr, where A is the width of the
strip.

Let J (r,t) be the flux at r at time ¢ , measured in quantity per unit area per unit time.

Hence amount u that passes though cross sectional area at r, , per unit time, is A (r4) J (r4,7) Where
A(ry) =2mhr,

Similarly, amount u that passes though cross sectional area at rp, , per unit time, is A (rp)J (r4,1)
where A (rp) = 27whry

Hence the net amount that flows, per unit time, between r, and r, is A (rg)J (rq,t) — A (rp) J (rp,t)

Since there is no source nor sink inside this region, then the above equal the rate at which the amount
u itself changes between r, and r,, which is % (u(r,t) x volume between r, and ry).

Hence we have

b
%/ﬂ u(r,t)A(r)dr=A(ry)J (ra,t) —A(rp)J (rp,t)

b
/aut(r,t)A(r)dr:A(ra)J(ra,z)_A(rb)J(rb,t)

Apply fundamental theorem of calculus on the RHS above where J (a,t) — J (b,t) = [;' J,dr hence
the above becomes

b a
/au[(r,t)A(r)dr:/b %[A(r)](r,t)]dr

But A (r) = 2mrh so the above becomes

/abut (r,t)rdr = /ba% [rJ (r,t)]dr



Changing the limits on the integral in the RHS above to make it match the LHS, we obtain

/abut (r,t)rdr = —/ab% [rJ (r,t)]dr

Because the above holds for all intervals of integration and the functions involved are continuous,
then we can remove the integrals and just write

u (rt)r= —% [rJ (r,1)]

Now assuming diffusion model for the flux, i.e. J(r,#) = —Du, (r,t), then the above becomes

u (rt)r= D% [ru, (r,1)]

Hence
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