HW 14 Mathematics 503, Mathematical Modeling, CSUF, August 6, 2007

Nasser M. Abbasi

June 15, 2014

Contents

1	Problem 9 page 346 section 6.2 (PDE's)	1
2	Problem 3 page 365 section 6.2 (PDE's)	4
3	Problem 5 page 365 section 6.2 Conservation laws	6

1 Problem 9 page 346 section 6.2 (PDE's)

problem:

Find all solutions to the heat equation $u_t = \kappa u_{xx}$ of the form u(x,t) = U(z) where $z = \frac{x}{\sqrt{\kappa t}}$ answer:

We have that $z(x,t) = \frac{x}{\sqrt{\kappa t}}$, hence $\frac{\partial z}{\partial x} = \frac{1}{\sqrt{\kappa t}}$ and $\frac{\partial^2 z}{\partial x^2} = 0$ and $\frac{\partial z}{\partial t} = -\frac{x}{2} (\kappa t)^{-\frac{3}{2}} \kappa = \frac{-x}{2} \frac{t^{-\frac{3}{2}}}{\sqrt{k}}$ Now

$$u_{x}(x,t) = U'(z)\frac{\partial z}{\partial x}$$
$$= U'(z)\frac{1}{\sqrt{\kappa t}}$$

and

$$u_{xx}(x,t) = U''(z) \frac{1}{\sqrt{\kappa t}} \frac{\partial z}{\partial x}$$
$$= U''(z) \frac{1}{\kappa t}$$

and

$$u_t(x,t) = U'(z)\frac{\partial z}{\partial t}$$
$$= \frac{-x}{2}U'(z)\frac{t^{-\frac{3}{2}}}{\sqrt{k}}$$

Plug in the above expressions into the PDE we obtain

$$u_{t} = \kappa u_{xx}$$

$$\frac{-x}{2}U'(z)\frac{t^{-\frac{3}{2}}}{\sqrt{k}} = \kappa U''(z)\frac{1}{\kappa t}$$

$$\frac{-x}{2\sqrt{kt}}U'(z) = U''(z)$$

But $z = \frac{x}{\sqrt{\kappa t}}$, hence the above becomes

$$-\frac{1}{2}z \, U'(z) = U''(z)$$

or

$$U''(z) + \frac{1}{2}z \, U'(z) = 0$$

Let U'(z) = y(z), hence the above becomes

$$y' + \frac{1}{2}z y = 0$$
$$\frac{y'}{y} = -\frac{1}{2}z$$
$$\frac{1}{y}\frac{dy}{dz} = -\frac{1}{2}z$$
$$\frac{1}{y}dy = -\frac{1}{2}zdz$$

Integrate both sides

$$\ln y = -\frac{1}{4}z^2 + C$$

Hence

$$y(z) = Ae^{\frac{-1}{4}z^2}$$

But since U'(z) = y(z), then

$$U(z) = \int y(z) dz + B$$
$$= A \int e^{\frac{-1}{4}z^2} dz + B$$

I think now I need to write the above in terms of *x*,*t* again. Fix time, and change *x* and so we have $dz = \frac{\partial z}{\partial x} dx = \frac{1}{\sqrt{\kappa t}} dx$ and the above integral becomes

$$u(x,t;\xi) = \int A(\xi) e^{\frac{-(x-\xi)^2}{4\kappa t}} \frac{1}{\sqrt{\kappa t}} d\xi + B(\xi)$$

for any ξ location along the space dimension *x*, where $A(\xi)$, $B(\xi)$ are functions that depend on the value ξ

2 Problem 3 page 365 section 6.2 (PDE's)

problem:

Use the energy method to prove the uniqueness for the problem

$$u_t = \nabla^2 u \qquad \mathbf{x} \in \Omega, t > 0$$

$$u(\mathbf{x}, 0) = f(\mathbf{x}) \qquad \mathbf{x} \in \Omega$$

$$u(\mathbf{x}, t) = g(\mathbf{x}) \qquad \mathbf{x} \in \partial\Omega, t > 0$$

Solution

First note that $\nabla^2 u \equiv \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}$ i.e. the Laplacian.

Proof by contradiction. Assume there is no unique solution. Let $u_1(x,t)$ and $u_2(x,t)$ be 2 different solutions to the above PDE. Let w(x,t) be the difference between these 2 solutions. i.e. $w(x,t) = u_1(x,t) - u_2(x,t)$, hence w(x,t) must satisfy the following conditions: it must be zero at the boundaries $\mathbf{x} \in \partial \Omega$ for all time, and also it must be zero inside Ω initially. Hence

$$w(\mathbf{x},0) = 0 \qquad \mathbf{x} \in \Omega$$
$$w(\mathbf{x},t) = 0 \qquad \mathbf{x} \in \partial \Omega, t > 0$$

Now if we can show that $w(\mathbf{x},t) = 0$ for t > 0 inside Ω , then this would imply that $u_1(x,t) = u_2(x,t)$, showing a contradiction, hence completing the proof.

i.e. we need to show that $w_t(\mathbf{x},t) = \nabla^2 w(\mathbf{x},t)$ yields a solution $w(\mathbf{x},t) = 0$ for $\mathbf{x} \in \Omega, t > 0$ Using the energy argument, we write

$$E(t) = \int_{\Omega} w^2(\mathbf{x}, t) \, d\mathbf{x}$$

First we note that E(0) = 0 since $w(\mathbf{x}, 0) = 0$ from the initial conditions above.

$$E'(t) = \frac{\partial}{\partial t} \int_{\Omega} w^2(\mathbf{x}, t) d\mathbf{x}$$

=
$$\int_{\Omega} \frac{\partial}{\partial t} w^2(\mathbf{x}, t) d\mathbf{x}$$

=
$$\int_{\Omega} 2w(\mathbf{x}, t) \frac{\partial}{\partial t} w(\mathbf{x}, t) d\mathbf{x}$$

But $\frac{\partial}{\partial t}w(\mathbf{x},t) = \nabla^2 w(\mathbf{x},t)$ from the PDE itself, hence the above becomes

$$E'(t) = 2 \int_{\Omega} w(\mathbf{x}, t) \,\nabla^2 w(\mathbf{x}, t) \,d\mathbf{x}$$
⁽¹⁾

But from Green first identity which states the following

$$\int_{\Omega} \left(u \nabla^2 w + \nabla u \cdot \nabla w \right) d\mathbf{x} = \int_{\partial \Omega} u \frac{dw}{dn} dA$$

Replace u by w in the above, we obtain

$$\int_{\Omega} \left(w \nabla^2 w + \nabla w \cdot \nabla w \right) d\mathbf{x} = \int_{\partial \Omega} w \frac{dw}{dn} dA$$
$$\int_{\Omega} w \nabla^2 w \, d\mathbf{x} + \int_{\Omega} \nabla w \cdot \nabla w \, d\mathbf{x} = \int_{\partial \Omega} w \frac{dw}{dn} dA$$
$$\int_{\Omega} w \nabla^2 w \, d\mathbf{x} = \int_{\partial \Omega} w \frac{dw}{dn} dA - \int_{\Omega} \nabla w \cdot \nabla w \, d\mathbf{x}$$
(2)

Comparing (1) and (2) we see that LHS of (2) is $\frac{1}{2}E'(t)$ Hence the above become

$$\frac{1}{2}E'(t) = \int_{\partial\Omega} w \frac{dw}{dn} dA - \int_{\Omega} \nabla w \cdot \nabla w \, d\mathbf{x}$$

But $\nabla w \cdot \nabla w = \|\nabla w\|^2$, so the above becomes

$$\frac{1}{2}E'(t) = \int_{\partial\Omega} w \frac{dw}{dn} dA - \int_{\Omega} \|\nabla w\|^2 d\mathbf{x}$$

But $w(\mathbf{x},t) = 0$ on $\partial \Omega$ for t > 0, since this is the boundary conditions. Hence the above becomes

$$E'(t) = -2\int_{\Omega} \|\nabla w\|^2 d\mathbf{x}$$

Therefore we showed that E'(t) is ≤ 0 since $\int_{\Omega} \|\nabla w\|^2 d\mathbf{x} \geq \mathbf{0}$ So energy inside Ω is nonincreasing with time. But since E(0) = 0 then E(t) = 0 (since energy can not be negative, this is the only choice left).

Therefore, from $E(t) = \int_{\Omega} w^2(\mathbf{x}, t) d\mathbf{x}$, we conclude that $w(\mathbf{x}, t) = 0$ everywhere in Ω for t > 0 since $w(\mathbf{x},t)$ is continuous in both its arguments.

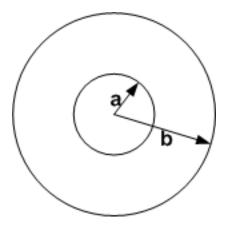
Hence we conclude since $w(\mathbf{x},t) = u_1(\mathbf{x},t) - u_2(\mathbf{x},t) = 0$ then $u_1(\mathbf{x},t) = u_2(\mathbf{x},t)$, then the PDE solution is unique.

3 Problem 5 page 365 section 6.2 Conservation laws

problem:

In absence of sources derive the diffusion equation for radial motion in the plane $u_t = \frac{D}{r} (ru_r)_r$ from first principles. That is, take an arbitrary domain between circles r = a, r = b and apply conservation law for the density u = u(r,t) assuming the flux is $J(r,t) = -Du_r$. Assume no sources.

Answer:



First note that the density u(r,t) is measured in quantity per unit volume.

Consider a cross sectional area through circle $r_a = a$. This area is $2\pi hr_a$ where *h* is the width of the strip.

Let J(r,t) be the flux at r at time t, measured in quantity per unit area per unit time.

Hence amount *u* that passes though cross sectional area at r_a , per unit time, is $A(r_a)J(r_a,t)$ where $A(r_a) = 2\pi h r_a$

Similarly, amount *u* that passes though cross sectional area at r_b , per unit time, is $A(r_b)J(r_a,t)$ where $A(r_b) = 2\pi h r_b$

Hence the net amount that flows, per unit time, between r_b and r_a is $A(r_a)J(r_a,t) - A(r_b)J(r_b,t)$ Since there is no source nor sink inside this region, then the above equal the rate at which the amount

u itself changes between r_b and r_a , which is $\frac{d}{dt}(u(r,t) \times \text{volume between } r_a \text{ and } r_b)$.

Hence we have

$$\frac{d}{dt} \int_{a}^{b} u(r,t) A(r) dr = A(r_{a}) J(r_{a},t) - A(r_{b}) J(r_{b},t)$$
$$\int_{a}^{b} u_{t}(r,t) A(r) dr = A(r_{a}) J(r_{a},t) - A(r_{b}) J(r_{b},t)$$

Apply fundamental theorem of calculus on the RHS above where $J(a,t) - J(b,t) = \int_{b}^{a} J_{r} dr$ hence the above becomes

$$\int_{a}^{b} u_{t}(r,t)A(r)dr = \int_{b}^{a} \frac{\partial}{\partial r} [A(r)J(r,t)]dr$$

But $A(r) = 2\pi rh$ so the above becomes

$$\int_{a}^{b} u_{t}(r,t) r dr = \int_{b}^{a} \frac{\partial}{\partial r} [rJ(r,t)] dr$$

Changing the limits on the integral in the RHS above to make it match the LHS, we obtain

$$\int_{a}^{b} u_{t}(r,t) r dr = -\int_{a}^{b} \frac{\partial}{\partial r} [rJ(r,t)] dr$$

Because the above holds for all intervals of integration and the functions involved are continuous, then we can remove the integrals and just write

$$u_{t}(r,t) r = -\frac{\partial}{\partial r} [rJ(r,t)]$$

Now assuming diffusion model for the flux, i.e. $J(r,t) = -Du_r(r,t)$, then the above becomes

$$u_t(r,t) r = D \frac{\partial}{\partial r} [r u_r(r,t)]$$

Hence

$$u_t = \frac{D}{r} \, [r u_r]_r$$