HW 12 Mathematics 503, analytical part, July 26, 2007

Nasser M. Abbasi

June 12, 2014

1 Problem

Let *V* be the space of continuously differentiable functions *y* such that $y(0) = 0, y(1) = 0$. On this space consider the functional

$$
J(y) = \int_0^1 [y'(x)]^2 + q [y(x)]^2 - 2fy(x) dx
$$

where $q > 0$ and f are given constants.

(a) Show that *J* achieves a minimum at *y* iff

$$
I = \int_0^1 y'(x) \phi'(x) + q y(x) \phi(x) - f \phi(x) dx = 0
$$

for all $\phi(x) \in V$

(b)Show that if $y \in V$ is twice continuously differentiable and satisfies this optimality condition then *y* satisfies the differential equation $-y''(x) + qy(x) = f, u(0) = 0, y(1) = 0$

(c)Conversely show that if $y \in V$ is twice continuously differentiable, and satisfies the differential equation above, then *y* satisfies the optimality condition of part (a)

2 Solution

2.1 part (a)

.

Let $A = \{y \in C^1[0,1], y(0) = y(1) = 0\}$, and let $A_y = \{\phi \in C^1[0,1], \phi(0) = \phi(1) = 0\}$. The set *A* is called the set of admissible functions (from which the function which will minimize the functional will be found), and A_y is called the set of admissible directions. We require also that $y + t\phi \in A$ where *t* is some small scalar.

Since this is an IFF, then we need to show the forward and the backward case. Start with the *forwards case*:

Given: $J(y) = \int_0^1 y'^2 + qy^2 - 2fy$ dxshow that

if
$$
I = \int_0^1 y' \phi' + q y \phi - f \phi dx = 0
$$
 then $J(y)$ is minimum

Consider

$$
J(y + \phi) = \int_0^1 \left[(y + \phi)'\right]^2 + q \left[(y + \phi) \right]^2 - 2f (y + \phi) dx
$$

=
$$
\int_0^1 (y'^2 + \phi'^2 + 2y' \phi') + q (y^2 + \phi^2 + 2y \phi) - 2fy - 2f \phi dx
$$

=
$$
\int_0^1 y'^2 + q y^2 - 2fy dx + \int_0^1 \phi'^2 + q \phi^2 dx + \int_0^1 2y' \phi' + 2q y \phi - 2f \phi dx
$$

=
$$
J(y) + Q + \int_0^1 2y' \phi' + 2q y \phi - 2f \phi dx
$$

Where $Q = \int_0^1 \phi'^2 + q\phi^2 \, dx \ge 0$ since $q > 0$ and the other functions are squared. Hence this implies from the above that if $\int_0^1 2y' \phi' + 2q y \phi - 2f \phi \ dx = 0$ then *y* is a minimizer of *J* (*y*). In other words

$$
J'(y; \phi) = \int_0^1 y' \phi' + q y \phi - f \phi \ dx = 0
$$

(This is because any change from *y* along any of the admissible directions ϕ will result in a functional $J(y + \phi)$ which is larger than it was at $J(y)$.

Now to show the *backward* case:

If
$$
J'(y; \phi) = \int_0^1 y' \phi' + qy \phi - f \phi \ dx \neq 0
$$
 then $J(y)$ is not a minimum.

Assume for some $\phi = \phi_0$ we have $J'(y; \phi_0) < 0$

$$
J(y+t\phi_0) = \int_0^1 \left[(y+t\phi_0)' \right]^2 + q \left[(y+t\phi_0) \right]^2 - 2f (y+t\phi_0) dx
$$

=
$$
\int_0^1 (y'^2 + t^2 \phi_0'^2 + 2ty' \phi_0') + q (y^2 + t^2 \phi_0^2 + 2ty \phi) - 2fy - 2tf \phi_0 dx
$$

=
$$
\int_0^1 y'^2 + qy^2 - 2fy dx + \int_0^1 t^2 \phi_0'^2 + qt^2 \phi_0^2 dx + \int_0^1 2ty' \phi_0' + 2t q y \phi_0 - 2tf \phi_0 dx
$$

=
$$
J(y) + t^2 Q + t \int_0^1 2y' \phi_0' + 2q y \phi_0 - 2f \phi_0 dx
$$

Where $Q = \int_0^1 \phi_0'^2 + q \phi_0^2 \ge 0$.Hence we have

$$
J(y+t\phi_0) = J(y) + t \left[2 \int_0^1 y' \phi'_0 + q y \phi_0 - f \phi_0 \, dx + \, tQ \right]
$$

Now, no matter how large *Q* is, we can make *t* small enough so that *tQ* is smaller than the absolute value of $|2J'(y;\phi_0)|$. But since $J'(y;\phi_0) < 0$, then $\left[2\int_0^1 y'\phi'_0 + q y\phi_0 - f\phi_0 dx + tQ\right]$ will be a *negative quantity*. Hence, since $t \times$ negative quantity is also negative quantity, then we conclude that

$$
J(y+t\phi_0) < J(y)
$$

Hence \boxed{y} is not a minimizer of $J(y)$. So no matter which *y* we hope it is our minimum, we can find an admissible direction ϕ_0 such that if move very slightly away from this *y* in this admissible direction, we find that $J(y+t\phi_0)$ is smaller (this will always be the case if $J'(y;\phi_0) < 0$)

2.2 Part (b)

Given $y \in C^2[0,1]$, and $J'(y;\phi) = 0$ for all admissible directions ϕ . Show that y satisfies the differential equation $-y''(x) + qy(x) = f, u(0) = 0, y(1) = 0$

Since $J'(y; \phi) = 0$, in other words $\int_0^1 y' \phi' + q y \phi - f \phi dx = 0$. Then now we do integration by parts.

$$
\int_0^1 \overbrace{\int_0^{y'} \phi' dx}^{y''} = [y'\phi]_0^1 - \int_0^1 y'' \phi dx
$$

$$
\int_0^1 y' \phi' dx = -\int_0^1 y'' \phi dx
$$

Since $\phi(0) = \phi(1) = 0$. Now substitute the above back into $\int_0^1 y' \phi' + q y \phi - f \phi \, dx$ and take ϕ as common factor, we obtain

$$
\int_0^1 \left(-y'' + qy - f\right) \phi \ dx = 0
$$

Now we apply the fundamental theory of variational calculus (which Lemma 3.13 is special case) and argue that since ϕ is arbitrary admissible direction, then for the above to be zero for every ϕ , we must have

$$
-y'' + qy - f = 0
$$

or

$$
-y'' + qy = f
$$

with $y(0) = y(1) = 0$

2.3 Part (c)

Given $y \in C^2[0, 1]$ and $-y'' + qy = f, y(0) = y(1) = 0$ show that $\int_0^1 y' \phi' + q y \phi - f \phi \ dx = 0$ Let $\phi \in A_d$. Now

$$
\frac{d}{dx}(y'\phi) = y''\phi + y'\phi'
$$

$$
\int_0^1 \frac{d}{dx}(y'\phi) dx = \int_0^1 y''\phi + y'\phi' dx
$$

$$
[y'\phi]_0^1 = \int_0^1 y''\phi + y'\phi' dx
$$

But $[y'\phi]_0^1 = 0$ since $\phi = 0$ at both ends. Hence the above becomes

$$
0 = \int_0^1 y'' \phi + y' \phi' dx
$$

But $y'' = -f + qy$ since *y* satisfies the differential equation. Hence the above becomes

$$
0 = \int_0^1 (-f+qy)\phi + y'\phi' dx
$$

=
$$
\int_0^1 y'\phi' + qy\phi - f\phi dx
$$

Which is the optimality condition (weak form) of part (a) we are asked to show.