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1 Problem 3 page 257 section 4.4 (Green Functions)
problem:

Consider boundary value problem u′′− 2xu′ = f (x), 0 < x < 1, u(0) = u′ (1) = 0. Find Green
function or explain where there isn’t one.

answer:

We see that p(x) =−1

First, lets see if λ = 0 or not. Since if λ = 0 since by theorem 4.19 (page 248) Green function does
not exist, and I do not need to try to find it.

Let
u′′−2xu′ = λu

If λ = 0 then solve the homogeneous equation u′′− 2xu′ = 0. Let y(x) = u′ (x) , hence we

obtain y′−2xy = 0, by separation of variables, we then have

y′

y
= 2x

1
y

dy = 2xdx∫ 1
y

dy = 2
∫

xdx
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Hence
lny = x2 +C

Which leads to y(x) = Aex2
. But since y = u′, then du

dx = Aex2
or

u(x) = A
∫ x

0
et2

dt +B

Therefore,

u1 (x) = A
∫ x

0
et2

dt

and
u2 (x) = B

At x = 0 we have u(0) = 0, hence u(0) = A
∫ 0

0 et2
dt +B or 0 = B so now u(x) = A

∫ x
0 et2

dt.

Now lets see if this satisfies the second boundary condition u′ (1) = 0. First note that

d
dx

(
A
∫ x

0
et2

dt
)
= Aex2

hence at x = 1 we obtain 0 = Aexp(1) which means A = 0 , but this means trivial solution since

both A,B are zero. Hence λ 6= 0 OK, so now I try to find Green function:

Now we need to find 2 independent solutions as combinations of A
∫ x

0 et2
dt and B such that each

will satisfies at least one of the boundary conditions.
We need u(0) = 0, hence if we take

u1 (x) =
∫ x

0
et2

dt

which will be zero at x = 0, and if we take

u2 (x) = 1

then we see that u′2 (1) = 0. Now find the Wronskian

W = det

u1 u2

u′1 u′2

= det


∫ x

0 et2
dt 1

ex2
0

=−ex2

Hence using equation 4.46 we obtain, noting that p =−1

g(x,ξ ) =


−u1(x)u2(ξ )

p W (ξ )
x < ξ

−u1(ξ )u2(x)
p W (ξ )

x > ξ

=


− u1(x)u2(ξ )

(−1)
(
−eξ 2

) x < ξ

− u1(ξ )u2(x)

(−1)
(
−eξ 2

) x > ξ

=


−e−ξ 2 ∫ x

0 et2
dt x < ξ

−e−ξ 2 ∫ ξ

0 et2
dt x > ξ
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Hence

g(x,ξ ) =−e−ξ 2
(

H (ξ − x)
∫ x

0 et2
dt +H (x−ξ )

∫ ξ

0 et2
dt
)

and
u(x) =

∫ x

0
g(x,ξ ) f (ξ )dξ

I used the Green function I derived, and used it to plot the solution (for f (x) = 1) and compare the
plot with the analytical solution.
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This is a plot of just the impulse response (green function) due to an impulse at x = 0.5
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This is another method to solving this problem by using properties of Green function
From above we found u1 =

∫ x
0 et2

dt, u2 = 1, but

g(x,ξ ) = A(ξ )u1 (x) 0 < x < ξ

= A(ξ )
∫ x

0
et2

dt

and

g(x,ξ ) = B(ξ )u2 (x)
= B(ξ ) ξ < x < 1

At x = ξ , due to continuity, we require that

A(ξ )
∫

ξ

0
et2

dt = B(ξ ) (1)
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and to impose the discontinuity condition on the first derivative we have

g′
(
ξ
+,ξ

)
−g′

(
ξ
−,ξ

)
=
−1

p(ξ )

0−A(ξ )eξ 2
= 1

A(ξ ) =
−1
eξ 2 (2)

From (1) we then obtain that

B(ξ ) =
−1
eξ 2

∫
ξ

0
et2

dt

Hence

g(x,ξ ) = A(ξ )u1 (x)

=
−1
eξ 2

∫ x

0
et2

dt 0 < x < ξ

and

g(x,ξ ) = B(ξ )u2 (x)

=
−1
eξ 2

∫
ξ

0
et2

dt ξ < x < 1

Hence

g(x,ξ ) = −1
eξ 2

(
H (ξ − x)

∫ x
0 et2

dt +H (x−ξ )
∫ ξ

0 et2
dt
)

Compare this solution to the one found above using the formula method we see they are the same.
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2 Problem 8, page 258 section 4.5
Problem:

Find the inverse of the differential operator Lu =−
(
x2u′

)′ on 1 < x < e subject to u(1) = u(e) = 0
solution:
This is SLP problem with p = x2,q = 0. First find if λ = 0 is possible eigenvalue.

λu =−
(
x2u′

)′
Let λ = 0, hence we have −

(
x2u′

)′
= 0 or −

(
2xu′+ x2u′′

)
= 0 or

u′′+
2
x

u′ = 0

Use separation of variables. First let y = u′, hence y′+ 2
x y = 0 or 1

y
dy
dx =−

2
x hence

∫ 1
y

dy =−2
∫ 1

x
dx

lny =−2lnx+ c

y = Ae−2lnx

y = A
1
x2

But y = u′, hence du = A 1
x2 dx or u = A

∫ 1
x2 dx

hence u =−A1
x +B or

u(x) = A
x +B

where the minus sign is absorbed into A. Hence we have 2 independent solutions A
x and B, so

we need combination of these 2 solutions to satisfy the BV. At x = 1 we have u = 0, hence if

we take u1 =
1
x −1 then it will satisfy this condition. At x = e we need u = 0, hence take

u2 =
1
x − exp(−1)

Then

W = det

u1 u2

u′1 u′2

= det

1
x −1 1

x − exp(−1)

−1
x2

−1
x2

=−ex2

Hence

W =
1− e−1

x2

Then green function is
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g(x,ξ ) =


−u1(x)u2(ξ )

W (ξ )
x < ξ

−u1(ξ )u2(x)
W (ξ )

x > ξ

=


−
( 1

x−1)
(

1
ξ
−e−1

)
ξ 2 1−e−1

ξ 2

x < ξ

−
(

1
ξ
−1
)
( 1

x−e−1)

ξ 2 1−e−1

ξ 2

x > ξ
(
1− 1

x

) (1−ξ e−1)
ξ(e−1−1)

x < ξ(1
x − e−1) (1−ξ )

ξ(e−1−1)
x > ξ

But the inverse L−1 is
∫

g(x,ξ ) f (x)dx where g(x,ξ ) is the green function given aboive.

Another way to solve the problem:
From above we found u1 =

1
x −1, u2 =

1
x − e−1, but

g(x,ξ ) = A(ξ )u1 (x)

= A(ξ )

(
1
x
−1
)

1 < x < ξ

and

g(x,ξ ) = B(ξ )u2 (x)

= B(ξ )

(
1
x
− e−1

)
ξ < x < e

At x = ξ , due to continuity, we require that

A(ξ )

(
1
ξ
−1
)
= B(ξ )

(
1
ξ
− e−1

)
(1)

and to impose the discontinuity condition on the first derivative we have

g′
(
ξ
+,ξ

)
−g′

(
ξ
−,ξ

)
=
−1

p(ξ )

B(ξ )

(
−1
ξ 2

)
−A(ξ )

(
−1
ξ 2

)
=
−1
ξ 2

B(ξ ) −A(ξ ) = 1 (2)

Solve (1) and (2) for B(ξ ) ,A(ξ )

From (2) we have B(ξ ) = 1+A(ξ ) ,substitute into (1) we have A(ξ )
(

1
ξ
−1
)
=(1+A(ξ ))

(
1
ξ
− e−1

)
or
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A(ξ )

ξ
−A(ξ ) =

1
ξ
− e−1 +

A(ξ )

ξ
−A(ξ )e−1

−A(ξ )+A(ξ )e−1 =
1
ξ
− e−1

A(ξ )
(
e−1−1

)
=

1
ξ
− e−1

A(ξ ) =
1−ξ e−1

ξ (e−1−1)

Hence

B(ξ ) = 1+A(ξ )

= 1+
1−ξ e−1

ξ (e−1−1)

=
1−ξ

ξ (e−1−1)

Then

g(x,ξ ) = A(ξ )u1 (x)

=

(
1−ξ e−1

ξ (e−1−1)

)(
1
x
−1
)

1 < x < ξ

g(x,ξ ) = B(ξ )u2 (x)

=

(
1−ξ

ξ (e−1−1)

)(
1
x
− e−1

)
ξ < x < e

Hence

g(x,ξ ) = 1
eξ 2

(
H (ξ − x)

(
1−ξ e−1

ξ(e−1−1)

)(1
x −1

)
+H (x−ξ )

(
1−ξ

ξ(e−1−1)

)(1
x − e−1) )

Which agree with the formula method.
This a plot of Green function for ξ = 2
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