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1 Problem 4 page 225 section 4.1
problem:

Consider SLP −y′′ = λy, 0 < x < 1 with B.V. y(0)+ y′ (0) = 0,y(1) = 0
is λ = 0 an eigenvalue? are there negative eigenvalues? show that there are infinitely many positive

eigenvalues by finding an equation whose roots are those eigenvalues and show graphically that there
are infinity many root

answer:
The SLP has the form −(p(x)y′)′+(q(x)−λ )y = 0 or −(p(x)y′)′+q(x)y = λy for a < x < b,

where p(x) not zero function and does not change sign over the interval, hence we can assume it to be

positive. If we compare this form to the given problem we see that p(x) = 1 and q(x) = 0

Assume λ = 0, hence the ODE become −y′′ = 0 which has the solution y = Ax+B for some
constants A,B. Now lets see is this solution can satisfy the B,V, given.

y(1) = 0→ A+B = 0, and y(0)+ y′ (0) = 0→ A = 0, hence since A = 0, then B = 0 hence the

only solution is y(x) = 0. Hence for non-trivial solution λ 6= 0

Now let us assume λ < 0. Assume y = Aemx, hence the characteristic equation is −m2 = λ or
m2 = −λ , but since λ < 0, then m is a real quantity. Let −λ = β 2 where β is some non zero real
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constant, hence we have m =±β and so the solution is

y = c1eβx + c2e−βx

Let see is this solution will satisfy the B.V. y(1) = 0→ 0 = c1eβ + c2e−β , and y(0)+ y′ (0) =
0→ c2 + c1 = 0, hence c1 =−c2, and we have −c2eβ + c2e−β = 0, hence c2

(
e−β − eβ

)
= 0, or but

e−β − eβ 6= 0 (it is zero only if β = 0 but we have that β > 0) then this means that c2 = 0. But this
means that c1 = 0, which then means that the solution is again y(x) = 0. Therefore, for non-trivial

solution, λ can not be negative.

Then then only choice left is for λ > 0 . (We do not have to check for this, since we know that

λ does not change sign) but for an exercise, let us verify it any way. As above, we obtain m2 =−λ but
since λ > 0 then solution will now contain complex exponential since m =±i

√
λ , then solution is (by

writing
√

λ = β )
y(x) = c1 cos(βx)+ c2 sin(βx)

Verify B,V, The first one leads to

y(1) = 0
0 = c1 cosβ + c2 sinβ (1)

and the second one leads to, since y′ (x) =−c1β sinβx+ c2β cosβx, we obtain

y(0)+ y′ (0) = 0
c1 + c2β = 0

or c1 =−βc2 , now substitute this in the first initial condition (1) we obtain

0 =−βc2 cosβ + c2 sinβ

0 = c2 (sinβ −β cosβ ) (2)

But if c2 = 0 this will lead to c1 = 0 also and to a trivial solution. Hence we need to consider
sinβ −β cosβ = 0 or roots of

tanβ −β = 0

The roots are the intersection of tan(x) with the line x, graphically we see the roots occur close to
multiplies of π
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Or we can just plot the function sinβ −β cosβ
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To find the roots, use a numerical root finder (Newton’s method), here are the first 10 positive roots
(we do not pick the zero root, since λ 6= 0)

Hence the square of the above is the list of the eigenvalues. Here are first few

Hence the eigenfunctions are
vn = cos

(√
λnx
)

and
un = sin

(√
λnx
)
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for n = 1,2,3, · · · where
√

λn is the root of tan
√

λn−
√

λn = 0, and the first few λn are shown above.

yn (x) = cos
(√

λnx
)
+ sin

(√
λnx
)

n = 1,2,3, · · ·
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Here is a plot of few solutions for n = 1 · · ·9
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2 Problem 8 page 225 section 4.1
problem:

Find eigenvalues and eigenfunctions for the problem −y′′− 2by′ = λy, 0 < x < 1 ,b > 0, and
y(0) = y(1) = 0

answer:
The SLP has the form −(p(x)y′)′+q(x)y = λy for a < x < b, where p(x) not zero function and

does not change sign over the interval, hence we can assume it to be positive. If we compare this form

to the given problem we see that p(x) = 1 and q(x) =−2b and since b > 0 then q(x) is always

negative over this range
Assume λ = 0, hence the ODE become −y′′− 2by′ = 0 which has the characteristic equation

−m2−2bm = 0 or −m−2b = 0, hence m = 2b, then the solution is y = c1xe2bx + c2e2bx. Now from
y(0) = 0→ c2 = 0, and so y = c1xe2bc, Now from y(1) = 0→ 0 = c1e2b, but e2b 6= 0 hence c1 = 0,

hence we obtain trivial solution y = 0, hence for non-trivial solution λ 6= 0 .

Now−y′′−2by′= λy, and the characteristic equation is m2+2bm+λ = 0, hence m= −2(b)±
√

4b2−4λ

2 ,

hence m =−b±
√

b2−λ . There are 3 cases: b2−λ < 0 and b2−λ = 0 and b2−λ > 0.

When b2− λ > 0, we have m will be real. Hence the solution will be of the form y = c1emx +
c2e−mx, where m is real. Now let see if we can satisfy the boundary conditions. From y(0) =
0→ c1 + c2 = 0, and from y(1) = 0→ 0 = c1em + c2e−m, hence 0 = c1 (em− e−m), but this means
c1 = 0 since m is not zero. This leads to c2 = 0 which leads to trivial solution y = 0. Therefore

b2−λ > 0 is not possible choice .

When b2−λ = 0, hence m =−b, then the solution is y = c1xe−bx+c2e−bx, and by similar argument

as above for the case of λ = 0, we conclude that it is not possible to have b2−λ = 0

Hence b2−λ < 0 or λ > b2 . In other words, λ is positive and must be greater than b2. Let

b2−λ =−k2 for k real and nonzero. Hence

m =−b± ik

and the solution is
y(x) = e−bx (c1 coskx+ c2 sinkx)

at y(0) = 0→ 0 = c1 and y(1) = 0→ 0 = e−bc2 sink

Hence for non-trivial solution,
sink = 0

or k = nπ or k2 = n2π2. But k2 = λ −b2 Hence λn− b2 = n2π2. Now since λ > b2 we can
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eliminate that n = 0 case. Then we have

λn = b2 +n2π2 n = 1,2,3, · · ·

Hence λ1 = b2 +π2,λ2 = b2 +4π2 , · · ·
So the eigenfunctions are

un = sinknx

where kn =
√

λn−b2

So the yn (x) solution is

y(x) = e−bxun n = 1,2,3, · · ·

yn (x) = e−bx sin
(√

λn−b2x
)
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3 Problem 3 page 225 section 4.1 (extra)
problem:

Find eigenvalues and eigenfunctions for the problem with periodic boundary conditions −y′′ = λy,
0 < x < L and y(0) = y(L) ,y′ (0) = y′ (L)

answer:
The SLP has the form −(p(x)y′)′+q(x)y = λy for a < x < b, where p(x) not zero function and

does not change sign over the interval, hence we can assume it to be positive. If we compare this form

to the given problem we see that p(x) = 1 and q(x) = 0

Assume λ = 0, hence we have y′′ = 0 or y(x) = Ax+B. Now to satisfy y(0) = y(L)we must have
B = AL+B which implies A = 0, hence y(x) = B. Now this solution does satisfy y′ (0) = y′ (L) since

y′ (0) = 0 and y′ (L) = 0 hence λ = 0 is an eigenvalue.

Now Assume λ < 0. Hence y′′+λy = 0 and characteristic equation is m2 +λ = 0 or m2 = −λ ,
since λ < 0, then −λ is positive, hence this leads to solution of y = c1emx + c2e−mx where m is real.
Now to satisfy y(0) = y(L)we must have

c1 + c2 = c1emL + c2e−mL (1)

and to satisfy y′ (0) = y′ (L) we must have, since y′ (x) = c1memx− c2me−mx that

c1m− c2m = c1memL− c2me−mL

Since λ 6= 0 in this case, then m 6= 0 so we can divide by m and obtain

c1− c2 = c1emL− c2e−mL (2)

add (1)+(2) we have

2c1 = 2c1emL or emL = 1 hence mL = 0 or m = 0 which contradicts our assumption that λ 6= 0.

So λ < 0 is not possible.

Now assume λ > 0 , Hence y′′+λy = 0 and characteristic equation is m2 +λ = 0 or m2 =−λ ,

since λ > 0, then m is complex„ hence m =±i
√

λ and this leads to solution of (by letting β =
√

λ )

y = c1 sinβx+ c2 cosβx

Now to satisfy y(0) = y(L)we must have

c2 = c1 sinβL+ c2 cosβL
c2 (1− cosβL) = c1 sinβL

c1 = c2
(1− cosβL)

sinβL
(3)
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and to satisfy y′ (0) = y′ (L) we must have, since

y′ (x) = c1β cosβx− c2β sinβx

that
c1β = c1β cosβL− c2β sinβL (4)

Substitute (3) into (4) we have

c2
(1− cosβL)

sinβL
β = c2

(1− cosβL)
sinβL

β cosβL− c2β sinβL

c2

(
(1− cosβL)

sinβL

√
λ − (1− cosβL)

sinβL
β cosβL+β sinβL

)
= 0

Since
√

λ 6= 0 the above becomes

c2
(
(1− cosβL)− (1− cosβL)cosβL+ sin2

βL
)
= 0

Now c2 6= 0 else this makes c1 = 0 also and we obtain trivial solution. Hence we must have

(1− cosβL)− (1− cosβL)cosβL+ sin2
βL = 0

(1− cosβL)−
(
cosβL− cos2

βL
)
+ sin2

βL = 0

1− cosβL− cosβL+ cos2
βL+ sin2

βL = 0

1− cosβL− cosβL

1︷ ︸︸ ︷
+
(
cos2

βL+ sin2
βL
)
= 0

2−2cosβL = 0

Hence
cosβL = 1

or
βL = 2nπ n = 1,2,3, . . .

Hence

λn =

(
2nπ

L

)2

n = 1,2,3, . . .

Hence the eigenfunctions are vn (x) = sinβnx and un = cosβnx

For λ0 = 0, v1 (x) = 0 and un = 1→ y0 (x) = 1

For λ1 = 1,2,3, · · · → v1 (x) = sin 2nπ

L x and un = cos 2nπ

L x→ yn (x) = c1 sin 2nπ

L x+ c2 cos 2nπ

L x

this is a plot of few eigenfunctions vn,un and the complete solution yn = un + vn for first few
eigenvalues
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