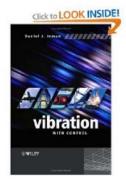
Advanced Mechanical Vibration EGME 511, California State University, Fullerton

Nasser M. Abbasi

[public]

april 24,2009 Compiled on May 28, 2020 at 3:23am

Contents


1 Introduction

I took this course in Spring 2009 at CSUF. Not part of a degree program course description from catalog:

		RETUR	N TO RESULTS
CLASS DETAILS			
Units 3 Instruction Mode Ir Class Components Se	egular Academic Sessior units 1 Person eminar Required		Postbaccalaureate 1/24/2009 - 5/15/2009 Graduate Option Fullerton Campus Fullerton Campus
Meeting Informatio	Last		
Days & Times TuTh 7:00PM - 8:15PM	Room E 042 - Lecture Room	Instructor Sang June Oh	Meeting Dates 1/24/2009 - 5/15/2009
TuTh 7:00PM - 8:15PM	CS 309 - Special Instruction	Staff	1/24/2009 - 5/15/2009
DESCRIPTION			

Figure 1: class info

Textbook

Vibration with Control (Hardcover)

by Daniel J. Imman (Author) "In this chapter the vibration of a single-degreeof-freedom system will be analyzed and reviewed..." (more) Key Phrases: combined dynamical systems, semidefinite damping, receptance matrix, New York, John Wiley, New Jersey (more...) No customer reviews yet. Be the first. List Price: \$111.69 & this item ships for FREE with Super Saver Shipping. Details You Save: \$18.31 (14%) In Stock. Ships from and sold by Amazon.com. Gift-wrap available.

Only 1 left in stock--order soon (more on the way).

Figure 2: Text book

2 sheetsheet

PDF HTML

3 HWs

H١	HWDescription of HW		
1	 Solve 2nd order ODE Calculate maximum value of the peak response (magnification factor) for a system with some damping rat (Quadrature peak picking method) Solve for the forced response of a single-degree-of-freedom system to a harmonic excitation Discuss the stability of 2nd order ODE Find range of values for PD controller in feedback for stability Compute a feedback law with full state feedback Find the equilibrium points of the nonlinear pendulum equation 		
2	 Find EQM for mass-spring with dynmaic friction on incline (this is nonlinear EQM due to columb friction) Modal analysis problem on 2 by 2 system Find EQM using lagrangian, 2 pendulums attached by one spring between them Another Modal analysis problem on 2 by 2 system 2nd order system, subject to 2 impulses, find response using convolution Convolution problem. Underdamped system, force is half sin 		
3	 Find EQM, one mass, 2 springs, different k, springs only attached when hit Find EQM using Lagrangian, pendulum, but string is rubber band with some stiffness. Find exact solution to nonlinear pendulum EQM nonlinear second order ODE. Find equilibrium points and stability at these. nonlinear 2nd order. Find stability around equilibrium similar to above, but find stability conditions based on damping sign columb damping and phase plane Given phase plane equation (i.e. dy/dx), determine stability. i.e. go back from phase plane to the system matrix Solve Van Der Pol using perurbation 		

4 Projects

- 1. Impulse response of second order system which is not underdamped
- 2. Stabilization of an inverted pendulum on moving cart using feedback control
- 3. Eigen modal analysis notebook PDF

5 some notes

- 1. possible error in key
- 2. note on solving wave equation
- 3. eigenvalue modal analysis