Advanced Mechanical Vibration EGME 511, California State University, Fullerton

Nasser M. Abbasi

april 24,2009 Compiled on May 28, 2020 at 3:23am [public]

Contents

1	Introduction	1
2	sheetsheet	2
3	HWs	3
4	Projects	3
5	some notes	3

1 Introduction

I took this course in Spring 2009 at CSUF. Not part of a degree program course description from catalog:

EGME 511 - 02 Advanced Mechanical Vibrations

CSU Fullerton | Spring 2009 | Seminar

			RETUR	RETURN TO RESULTS	
CLASS DETAILS					
Status	Open		Career	Postbaccalaureate	
Class Number	20160		Dates	1/24/2009 - 5/15/2009	
Session	Regular Aca	demic Session	Grading	Graduate Option	
Units	3 units		Location	Fullerton Campus	
Instruction Mode	In Person		Campus	Fullerton Campus	
Class Components	Seminar	Required			

Meeting Information					
Days & Times	Room	Instructor	Meeting Dates		
TuTh 7:00PM - 8:15PM	E 042 - Lecture Room	Sang June Oh	1/24/2009 - 5/15/2009		
TuTh 7:00PM - 8:15PM	CS 309 - Special Instruction	Staff	1/24/2009 - 5/15/2009		

DESCRIPTION

Prerequisite: EGME 431. Vibrations in rotating and reciprocating machines; noise and vibration in fluid machinery; continuous systems; random vibrations; transient and nonlinear vibration, computer applications.

Figure 1: class info

Textbook

Figure 2: Text book

2 sheetsheet

PDF HTML

3 HWs

Н	VDescription of HW
	Description of 1111
1	1. Solve 2nd order ODE
	2. Calculate maximum value of the peak response (magnification factor) for a system with some damping ratio (Quadrature peak picking method)
	3. Solve for the forced response of a single-degree-of-freedom system to a harmonic excitation
	4. Discuss the stability of 2nd order ODE
	5. Find range of values for PD controller in feedback for stability
	6. Compute a feedback law with full state feedback
	7. Find the equilibrium points of the nonlinear pendulum equation
2	1. Find EQM for mass-spring with dynmaic friction on incline (this is nonlinear EQM due to columb friction)
	2. Modal analysis problem on 2 by 2 system
	3. Find EQM using lagrangian, 2 pendulums attached by one spring between them
	4. Another Modal analysis problem on 2 by 2 system
	5. 2nd order system, subject to 2 impulses, find response using convolution
	6. Convolution problem. Underdamped system, force is half sin
3	1. Find EQM, one mass, 2 springs, different k, springs only attached when hit
	2. Find EQM using Lagrangian, pendulum, but string is rubber band with some stiffness.
	3. Find exact solution to nonlinear pendulum EQM
	4. nonlinear second order ODE. Find equilibrium points and stability at these.
	5. nonlinear 2nd order. Find stability around equilibrium
	6. similar to above, but find stability conditions based on damping sign
	7. columb damping and phase plane
	8. Given phase plane equation (i.e. dy/dx), determine stability. i.e. go back from phase plane to the system matrix
	9. Solve Van Der Pol using perurbation
	3. Solve van Dei 101 using perurbation

4 Projects

- 1. Impulse response of second order system which is not underdamped
- 2. Stabilization of an inverted pendulum on moving cart using feedback control
- 3. Eigen modal analysis notebook PDF

5 some notes

- 1. possible error in key
- 2. note on solving wave equation
- 3. eigenvalue modal analysis