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3.2 Calculate the solution to
¥+2%x+3x= sint+6(t—7r)
x(0)=0 x(0)=1
and plot the response.
Solution: Given: ¥ +2x + 3x = sint + é(t - 7:), x(O) =0, x(O) =0

[

k
wn=\{:=1.732 rad/s, { = =0.5774, 0, = o,\1-{* =1.414 rad/s
m 2lom ’

Total Solution:

x(l)=xh+xp| O<t<m
x(t)=xh+xp,+xp2 1>n
Homogeneous: Eq. (1.36)
x, (1) = e sin(w,1 +¢) = Ae™'sin(1.4141 + 9)
Particular: #1 (Chapter 2)

. F,
x, (D= Xsm(a)t - 6), where @ =1 rad/s . Note that f, =—>=1
m
=X= f’ == 0.3536, and 6= tan"[ menwz]z 0.785 rad
N \[(co,f - 0?) +(20,0) ®,-®

=x,,()=0.3536sin(¢ - 0.7854)
Particular: #2 Equation 3.9 — —

X, (I) = o, e'C"’” (=) sin a, (l - T) = W

Lt sin1.414(1 - 7)

=x,,(t)=0.7071e " sin1 414(1 - 7)

The total solution for 0< t<w becomes:
x(t) = e sin(1.4141 + )+ 0.3536sin(r —0.7854)

(
#(1) = —Ae”" sin(1.414¢ + §)+1.414 4™ cos(1 4141+ ¢)+0.3536c0s(¢ — 0.7854)
(

0.25

x(0)=0=Asing-025= 4A=——

)= sing
#(0)=1=—Asing+1.4144cos¢+0.25=50.75=0.25~ 1.414(0.25);;5

= ¢=0.34 and 4=0.75
Thus for the first time interval, the response is

x(1)=0.75¢"" sin(1.4141 +0.34)+03536sin(1-0.7854)  0<t<7

Next consider the application of the impulse at # =7




x(t) =x,+ X, + X,

x(£) = —0.433¢” sin(1.4141 + 0.6155) + 0.3536sin(¢ - 0.7854) - 0.7071¢ ! sin(1.4141 - 7) (> 7

The response is plotted in the following (from Mathcad):

aS T

"f—"—o U ;\/1‘5\ o
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The vibration packages dropped from a height of » meters can be approximated by
considering Figure P3.8 and modeling the point of contact as an impulse applied to the
system at the time of contact. Calculate the vibration of the mass m after the system falls
and hits the ground. Assume that the system is underdamped.

o

Solution: When the system hits the ground, it responds as if an impulse force acted on it.

5w A
" F
From Equation (3.6): x(t) = sinw,t where —=v,
mw, m
Calculate vo:
. 1 .
For falling mass: x= Eat

So, v, = gt’, where t* is the time of impact from height /

h=lgt‘2=>t'= 2h
2 g

v, =+2gh

Let ¢ = 0 when the end of the spring hits the ground

x(t) = _@e-@,, sinw ¢

(1]

The response is
d

Where @, @y, and ¢ are calculated from m, ¢, k. Of course the problem could be solved

as a free response problem with xo = 0, v = \/Zgh or an impulse response with impact
model as the unit velocity given.
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-Lon
x(1) 1= (e t-sin(tml-t) + A-e";""“"-sin(wrl-t + ¢)) + [

3-13

Calculate the response of the system
35(1) + 6%(1) + 12x(t) = 38(¢) - 8t~ )

subject to the initial conditions x(0) =0.01 m and W0) = 1 m/s. The units are in Newtons.
Plot the response.

Solution: First compute the natural frequency and damping ratio:
0] =JT—£=2 rad/s, C=—6—-=0.5, w,=2v1-0.5 =1.73 rad/s
" 3 2-2:3
so that the system is underdamped. Next compute the responses to the two impulses:

x ()= L

e 'sinwt= —3—e'“'” sinl.73(t—1)=0.577¢"'sin1.73t,1 > 0
moo, 3(1.73)

A

F o wun .
x,(f)=——¢ “i D sinw, (1-1) = D)
. .

Now compute the response to the initial conditions from Equation (1.36)

e'sin1.73t=0.193¢" " sin1.73(z = 1), > |

x, (1) = Ae™ sin(a)dt + ¢)

A \[(Vo + C“’n"o)z + (’%“’d)2 ., ¢=tan” [_x‘l&_] =0.071 rad

w? v, + {0, x,
= x,(1) =0.5775¢" sin(¢ +0.017)
Using the Heaviside function the total response is
x(1) = 0.577¢” sin1.73¢ +0.583¢"" sin(f +0.017) +0.193¢ ™" sin1.73(¢ — N — 1)

This is plotted below in Mathcad:

g-Gron ft—1)

wd

0.5 -‘-/_\
}_zﬂ N

-0sd

-3-wd

-sinfod- (t - 1)]]-4»(1 -1)

Note the slight bump in the response at ¢ = 1 when the second impact occurs.
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3.16 Calculate the response of an underdamped system to the excitation given in

Figure P3.16.
Plot of a pulse input of the form f{r) = Fisint.
1o
£, —
1y
4 * Iw
Figure P3.16
Solution:
x(1)= m:D o I[F(f)ew sina, (1)) ds
F(t) = F,sin (t) 1<z (From Figure P3.1 6)
Fort<m, x (t) = —F°—e"§‘”"’ j'(sin 7" sinw, (t - 'L‘)) dt
mmd ]

x(t)=;1;‘_(;:e-§m,.xx

2[1 " Za:d N wnz]{ecw": [(md —1)sint - o, cost]-— (w, - 1)sinwt ~ Lo, cosa)dt}

i
* 21+20,+0, ]

{ecm,,: [(cod - l)sint -{w, cosi] + (cod - l)sin wt-lw, coswdt}

Fort > 7,: j: f(@)h(t-1)dT= j: f(Oh(t—-1)dT + j;(O)h(t -1)dt
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X (t) = Ae’g“’"' uj(sin e sinw, (t - 1')) dt

mﬂ)d )
FE _
=—20 0 o, X
m

d

1 {e:w.,' [(co - l)sin [co ; (t - n)] -, cos[co y (t - n)]]}

2[l+2wd+con’] —(wd—l)sinwdt—cjw"coswdt

! { o [(0’4 + 1) sin [“’d (1- 1-)] + chos[co L(e- 7:)]]}

+
2[1+20,+0, ] +(o, = 1)sinw - o, cosw,¢

Alternately, one could take a Laplace Transform approach and assume the under-damped
system is a mass-spring-damper system of the form

mi(t)+ ci(t)+ kx(t)= F(t)
The forcing function given can be written as

F(t)= Fy(H (1) H(1-))sin(?)
Normalizing the equation of motion yields

#(t)+ 2w, x (1) + w2x(1) = £, (H (1) - H(t - 7))sin(7)
where f, =i and m, c and k are such that0<{ < 1.
m

Assuming initial conditions, transforming the equation of motion into the Laplace domain
yields

fo(l+e"’”)

s +1)(s* + 2,5+ 0})

X(s)= (
The above expression can be converted to partial fractions

X(S)=fo(l+e-m)(AS+B)+ﬁ)(l+e.m)( Cs+D )

st +1 s+ 20w, s + o}

where A, B, C, and D are found to be
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_ -2(w,
- (I - co,f)2 +(28w,)’
B= -1
(1- @} ) +(2¢w,)’
C= 20w,

(1 ~o2) +(2¢w,)
p- 1zei)+(2o,)
(1-02)" +(2¢w,)

Notice that X(s) can be written more attractively as

As+B
X(s)=fo[ s Cs+D ]+f()e_,,,[As+B+ Cs+D )

+
s+1 s +2ws+ 0} sS+1 s +2w,s+ o}

= fu (G (s) + e"”G(s))
Performing the inverse Laplace Transform yields
x(1)= £,(g () + H (t~7)g(t - 7))

where g(?) is given below

g(t) = Acos(t) + Bsin(t) + Ce™* cos(w,¢) + (Bz—c-@’l]e'“’"‘ sin(w,t)

wd
, is the damped natural frequency, ®, = ,\1-¢* .

Let m=1 kg, c=2 kg/sec, k=3 N/m, and F,=2 N. The system is solved numerically. Both
exact and numerical solutions are plotted below



0.7

— Exact Solution
— Numerical Solution

Respenss

Tome{set)

Figure 1 Analytical vs. Numerical Solutions

Below is the code used to solve this problem
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% Establish a time vector
t=[0:0.001:10];

% Define the mass, spring stiffness and damping coefficient
m=1;
c=2;
k=3;

% Define the amplitude of the forcing function
F0=2;

% Calculate the natural frequency, damping ratio and normalized force amplitude
zeta=c/(2*sqrt(k*m));

wn=sqrt(k/m);

f0=F0/m;

% Calculate the damped natural frequency
wd=wn*sqrt(1-zetat2);

% Below is the common denominator of A, B, C and D (partial fractions
% coefficients)
dummy=(1-wnA2)A2+(2*zeta*wn)"2;

% Hence, A, B, C, and D are given by
A=-2%zeta*wn/dummy;
B=(wn*2-1)/dummy;
C=2*zeta*wn/dummy;
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D=((1-wn*2)+(2*zeta*wn)A2)/dummy;

% EXACT SOLUTION

%7
************************************************************************
*

%
************************************************************************
*

for i=1:length(t)
% Start by defining the function g(t)
g(i):A*cos(t(i))+B*sin(t(i))+C*exp(-zeta*wn*t(i))*cos(wd*t(i))+((D-
C*zeta*wn)/wd)*exp(-zeta*wn*t(i))*sin(wd*t(i));
% Before t=pi, the response will be only g(t)
if t(i)<pi
xe(i)=f0*g(1);
% d is the index of delay that will correspond to t=pi
d=i;
else
% After t=pi, the response is g(t) plus a delayed g(t). The amount
% of delay is pi seconds, and it is d increments
xe(i)=f0*(g(i)+g(i-d));
end;
end;

% NUMERICAL SOLUTION
%

************************************************************************
*

%
************************************************************************
*

% Start by defining the forcing function
for i=1:length(t)
if t(i)<pi
f(i)=f0*sin(t(i));
else
f(i)=0;
end;
end;

% Define the transfer functions of the system
% This is given below

% 1

%
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% sM2+2*zeta*wn+wnA2

% Define the numerator and denominator
num=[1];

den=[1 2*zeta*wn wn’2];

% Establish the transfer function
sys=tf(num,den);

% Obtain the solution using lsim
xn=lIsim(sys,f,t);

% Plot the results

figure;

set(gcf,'Color','White');

plot(t,xe,t,xn,'--");

xlabel('Time(sec)");

ylabel('Response’);

legend('Forcing Function','Exact Solution','Numerical Solution');
text(6,0.05,uparrow','FontSize',18);

axes("Position',[0.55 0.3/0.8 0.25 0.25])
plot(t(6001:6030),xe(6001:6030),t(6001:6030),xn(6001 :6030),"--');
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- 3.21 A machine resting on an elastic support can be modeled as a single-degree-of-
freedom, spring-mass system arranged in the vertical direction. The ground is subject to
a motion y(¢) of the form illustrated in Figure P3.221. The machine has a mass of 5000
kg and the support has stiffness 1.5x10° N/m. Calculate the resulting vibration of the
machine.
.‘(f}:’m}

us

- |
02 06 t=}

Solution: Given m = 5000 kg, k = 1.5x10° N/m, @, = \/k_/n: = 0.548 rad/s and that
the ground motion is given by:
2.5t 0<t<0.2
y()=40.75-125 02<1<0.6
0 t20.6
The equation of motion is m¥ + k(x— y)=0 or mi + kx = ky = F(t) The impulse
response function computed from equation (3.12) for an undamped system is

h(t—f)=m:0

sinw, (1—17)
n

This gives the solution by integrating a yh across each time step:
x(t) = mmL [{)sine, (- )dr = 0, [ WD)sine, (- T)dr
For the interval 0< t’_l<_ 0.2:
x() =0, [ 25tsinw,(t-1)dt
= x(t) = 2.5 — 4.565in0.548t mm 0<7<0.2
For the interval 0.2< ¢t < 0.6:
x(0)=w, [ 2.50sinw,(t~ 1)dT+ o, [, (0.75-1257)sin0, (1~ 7)ds

=0.75-0.5c0s0.548(t — 0.2) — 1.25¢ + 2.285in 0.548(z — 0.2)
Combining this with the solution from the first interval yields:
x(£)=0.75+1.25t—0.5c0s0.548(1 - 0.2)

+6.485in0.548(1 — 0.2) - 4.565in0.548(t - 0.2) mm 0.2t < 0.6
Finally for the interval ¢ >0.6:
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x0) =, [ 2500, (- 1)de+o, [ (0.75-1250sinw, (1~ Ddr + 0, [ (O)sine, (- )ds

=—0.5c0s0.548(z — 0.2) — 2.285in 0.548(¢ — 0.6) + 2.28sin 0.548(7 — 0.2)
Combining this with the total solution from the previous time interval yields:
x(t) = —0.5c050.548(¢ — 0.2) + 6.845in 0.548(r — 0.2) — 2.285in 0.548(1 — 0.6)
—4.565in0.548t mm¢2>0.6
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3.29  Determine the Fourier series representation of the sawtooth curve illustrated in Figure

P3.29.
it}
! #
44
/
‘ A b [:;w I

B
Solution: The sawtooth curve of period 7 is
I
Ff)=—t o0<t<2n

27
Determine coefficients a,a ,b :

»
) s

_[ F(r)cos nw, (dt, where @, = —=—=

0 r 2=

[ 1|7
—1} |cosnldt |=— I { cos ntdt
2 Ay

2“:212{ 12(1—1)+1(0—0)]=0

7 2]
. A n

—

1'?2 n

¥ 5
= [#cos ni + —tsinnt

2 T 2 2 ] ) ] 2n )
—j F(t smnw tdt = — J —¢ |sinntdt |=— j 1 sin ntdt
e 2|y \2¢m i, ol
| T 1] I
[—smm——rcosnt = 2[—,(0— )——(2%—0)]
”F: i ! 2nt| n
_ I {=2= —l
2 Can

IFourier Serles

i
F)=1-25, Lo

nl
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338 Solve the following system for the response x(f) using Laplace transforms:

1003(¢) + 2000x(¢) = 505(¢)

where the units are in Newtons and the initial conditions are both zero.

Solution:

First divide by the mass to get
#+20x()=0.56(¢)

Take the Laplace Transform to get
(s* +20)X(s)=0.5

So

0.5

X(s)=
() s2+20

Taking the inverse Laplace Transform using entry 5 of Table 3.1 yields

X5)=22— 2 where w=+20

20 82 +0?

=x(f)= —l—sin «/ﬁt

a5




344 Calculate the response spectrum of an undamped system to the forcing function

Fﬂsinﬁ—! oszsz,
F(t)= [
0 1>1

assuming the initial conditions are zero.
Solution: Letw=m/r. The solution is the homogeneous solution xy(f) and the
particular solution xp(l) 0rx(l)=xh(f)+xp(t). Thus
. Eo).
x(l): Acosw [+ Bsinw {+| ——— |sinat
k — maw

where 4 and B are constants and @, is the natural frequency of the system:

Using the initial conditions x(O) = x(O) =( the constants 4 and B are

._]-T()w
A=0, B=—F"F—"——
@, (k - ma)z)
; F ik w .
so that x(t):_—“_z{sinmt——smmni y WS IEE
' I—(a)/co") @,

Which can be written as (where 6 = F, / k the static deflection)

x(t): : j{sinn_!
) I (r] A ¢

2,

and wheret =27/ w . After ¢ the solution is a free response

x(t)=A'cosw 1 + B'sinw 1, 1> 1,
where the constants A' and B' can be found by using the values of x(f = f£1) and
#(r=1).0>1,. This gives

T . 27 "
,\'(1 = tl) = a[-—sm—’} = A'cos.contI + B'sinw 1,

2{I T
JE'.(I = f]) = a{—;—{ - IECDS?} =—w A'sin@t + , B'cosw [
1 |
where
)
a —_—

I'hese are solved to yield



3- 60

arn

ar. .
A'= sinw,t, B'=- [1+coswﬂt,]

nl nl

So that after #; the solution is

x(t) = (T/t') [sinZﬂ(t—'—i)—sinbti:l,tZtl
2 T

6 2{1—(1/21,)} T




3.50 Calculate the frequency response function for the compliance of Problem 3.49.

Solution: From problem 3.49,

1
Hls)=
( ) as' +bs’ +cs* +ds+e
Substitute s = j@ to get the frequency response function:

1
a(jo)' +b(jo) +c(jo) +d(jo)+e

H(jw)=

aw' —‘cco2 + e—j(—b(o’ + da))

H(jo)=
(jm) (aco‘ —cw* + e)2 + (—ba)3 + d(xz))z

3.49 Calculate the compliance transfer function for a system described by
a¥ +bi + i+ di+ex = f(t)

where f{/) is the input force and x(?) is a displacement.

Solution:
X(s)

F(s)'

Taking the Laplace Transform yields

The compliance transfer function is

(as“ +bs*+es’ +ds+ e)X(s)= F(s)

X (s) |
So, =
F(s) as* +bs* +cst +ds+e




