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Chapter 10: The Kolmogorov Equations

The purpose of this note is to develop the forward Kolmogorov equations,
and also the backward Kolmogorov equations, for the case of a pure-jump,
continuous-time Markov chain.

For a stationary Markov chain, define the transition probability

Pij(t) = P(X(r + t) = j IX(r) = i) .

Denote the state space by I. Then, considering the transition probability
Pij (t + s), and partitioning over all intermediate states k E I at time s, it
follows that

Pij(t + s) = LPik(S)Pkj(t) .
kEf

These equations are the Chapman-Kolmogorov equations, which playa fun­
damental role throughout the analysis of Markov chains. From these equa­
tions, we can derive the forward Kolmogorov equations and the backward
Kolmogorov equations.

The Forward K olmogorov Equations We have

Pij(t + s) = LPik(t)Pkj(S) = LPik(t)Pkj(S) + Pij (t)Pjj (s) .
kEf ktj

Thus,

Pij(t + s) - Pij(t) = LPik(t)Pkj(S) + Pij(t) (Pjj(S) - 1) .
ktj

Dividing both sides by s, and proceeding formally, we can take the limit as
S -+ 0+, to get

P~j(t) = LPik(t)qkj - VjPij(t) .
ktj

These equations are called the forward Kolmogorov equations.
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The Backward Kolmogorov Equations We have

Pij(t + s) = LPik(S)Pkj(t) = LPik(S)Pkj(t) + Pii(S)Pij(t) .
kEf ki-i

Thus,

Pij(t + s) - Pij(t) = LPik(S)Pkj(t) = LPik(S)Pkj(t) + (Pii(S) - l)Pij(t) .
kEf ki-i

Dividing both sides by S, and proceeding formally, we can take the limit as
S ---+ 0+, to get

P~j(t) = L qikPkj(t) - ViPij(t) .
ki-j

These equations are called the backward Kolmogorov equations.

Let P(t) be the matrix whose (i, j)-th entry is Pij(t). Denote the state
probability vector at time t by z(t). Thus, zn(t) = P(X(t) = n), for n E I.
For any time t 2: 0, we then have z(t) = z(O)P(t). Next, define Q to be the
matrix whose (i, j)-th entry is Qij, for i =I- j, and qii = -Vi. Then the forward
Kolmogorov equations can be written

P'(t) = P(t)Q, for t> 0 ,

while the backward Kolmogorov equations can be written

?'(t) = QP(t) , for t> 0 .

In developing mathematical models using continuous time Markov chains,
the elements of the matrix Q are typically determined first. See for instance,
Example 10.3.1 in the text, and also Problems 10.4, 10.5, and 10.6. Then,
in theory at least, the differential equations above can be solved to find the
transition matrix P(t) and the state probability vector z(t) defined above.

Example 1 The Poisson process: The Poisson process, with rate con­
stant A > 0, is a pure birth process with state space I = {O, 1,2," '}, for
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which qi,i+l = A, Vi = A, and qi,j = 0 otherwise. Thus, the matrix Q has the
form

Q=

-A A 0
o -A A
o 0 -A

The entries in the transition matrix P(t) can be found by induction. However,
we will just find the state probability vector z(t), assuming the process starts
in state O. Recalling that zn(t) = P(X(t) = n), we have z(O) = (1,0,0", .).

In effect, we are finding the first row of P(t), since at any time t ~ 0,
z(t) = z(O)P(t). Using the forward Kolmogorov equations gives us

z' (t) = z(0) P' (t) = z (0) P (t) Q = z(t) Q .

Thus, for n = 0, we have zb(t) = -AZo(t), and for n ~ 1,

z~ (t) = AZn-l (t) - AZn(t) .

The equation for n = 0 yields zo(t) = e-At , where we have used the initial
condition Zo (0) = 1. Next, for n ~ 1, using the integrating factor eAt, we can
solve for Zn (t) to get

zn(t) = Ae-At lot eASzn_l(s)ds,

where we have invoked the initial condition zn(O) = 0 for n ::::: 1. Working
with these equations successively, starting with zo, gives us

Zn(t) = (At)n e-At
n! '

for n ~ 0 . •
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Example 2 A device is either operational (state 1), or being repaired
(state 0). If it is in state 1, it can fail in an interval of time (t, t + h) with
probability J-th + o(h). If it is in state 0, it can be repaired and become
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operational in an interval of time (t, t + h) with probability Ah + o(h). For
this model, we have

Q = [-A A].
fJ -fJ

The forward Kolmogorov equations P'(t) = P(t)Q are, in the first row:

p~,o(t) = -APO,O(t) + fJPO,l(t) and P~,l(t) = APO,O(t) - fJPO,l(t) ,

and in the second row:

P~,o(t) = -API,O(t) + fJPl,l(t) and P~,l(t) = APl,O(t) - fJPl,l(t) .

( e1 v~ h'"""?

'-t v""'~

P~,l (t) t (A + fJ)PO,1 (t) = t-A .

From the first set of equations, noting that Po,o(t) + PO,l(t) = 1, we obtain
the single differential equation I

c!"t'V'- "it -t\. t~' rs f:: I I

Using the initial condition PO,l (0) = 0, and employing the integrating factor
e-(A+Jl)t, yields

A A -(A+Jl)t- --e
PO,l = A + fJ A + fJ

and thus,
__fJ_ + _A_e-(A+Jl)t

Po,o - A + fJ A + fJ

In a similar way, it follows that

fJ _ _fJ_e-(A+Jl)t
Pl,O = A + fJ A + fJ

and,
__A_ + _fJ_e-(A+Jl)t

PI,1 - A + fJ A + fJ

Note that by taking the limit as t ----t 00, the long-run state probability vector
7f is found to be

(
fJ A)7f= -- --

A+fJ' A+fJ .

This result could also have been obtained by solving the balance equations

7fQ = 0, subject to 7fo + 7fl = 1. •
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Exercises

1. For the machine repair problem in Problem 10.4 of the notes, what is
the Q matrix? Assume there is only one repair person (s = 1).

2. For the machine repair problem with spares in Problem 10.5 of the
notes, what is the Q matrix? Assume there is one repair person (s = 1),
and one machine (m = 1).

3. For the light bulb problem, Problem 10.6 of the notes, what is the Q
matrix?
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