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Chapter 1

Introduction

This is a one unit independent studies Math course I took during spring 2007 to help me to practice
doing Linear Algebra. Supervisor is

Dr Angel R. Pineda, Ph.D.
Assistant Professor
Mathematics Department
California State University, Fullerton
800 N. State College Blvd.
Fullerton, CA 92834
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Chapter 2

HWs

2.1 HW 1

2.1.1 Problem 1

Part A

Show that the set of even functions, f (x) = f (−x) is a subspace of the vector space of all function f (<)

Answer:

(a) if f is an even function, then f (x) − f (−x) = 0

letw(x) = f (x)+д(k) where f ,д are even functions. To show closure under addition, We need to show
thatw(x) is also an even function.

w(x) −w(−x) = { f (x) + д(x)} − { f (−x) + д(−x)}

= { f (x) − f (−x)} + {д(x) − д(−x)}

= 0 + 0

= 0

Hencew(x) is closed under addition. To show closure under scalar multiplication. Let c ∈ <. we need
to show that c f (x) is even function when f (x) is even function. Let д(x) = c f (x)

д(x) − д(−x) = c f (x) − c f (−x)

= c { f (x) − f (−x)}

= c (0)

= 0

Hence closed under scalar multiplication.

And since the ”zero” function is also even (and odd as well), Hence even functions are subspace of the
vector space of all function f (<)
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Part B

Show that the set of odd functions, д(−x) = −д(x) form a complementary subspace with the set of even
functions (i.e. two subspacesW ,Z of V are complementary if

(i)W ∩ Z =
{
®0
}

(ii)W ∪ Z = V , i.e. every ®v ∈ V can be written as ®v = ®w + ®z where ®w ∈W , ®z ∈ Z

solution: Let the set of odd functions beW and let the set of even functions be Z . Let the set of all
functions be V .

set W (even functions)

set Z (odd functions)

set V

Some functions in V are 

not even nor odd

To show thatW ,Z are complementary, we need to show that the above 2 properties are met.

Looking at property (i). This property says that the function ®v ∈ V can be decomposed into the sum of
an odd function and even function in one and only one way. i.e. ®v = ®w + ®z where ®w ∈ W , ®z ∈ Z is a
unique decomposition of ®v .

To show this, apply proof by contradiction. Assume the function ®v ∈ V can be written as the sum of
even and odd functions in 2 different ways. ®v = ®w1 + ®z1 and also ®v = ®w2 + ®z2 where ®w1, ®w2 ∈ W and
®z1, ®z2 ∈ Z . But this means that ®w1 + ®z1 = ®w2 + ®z2. Which implies that ®w1 − ®w2 = ®z2 − ®z1.

Since the difference between 2 even functions is an even function (This can be easily shown from
properties of even functions if needed), and the difference between 2 odd function is an odd function,
then we have that an even function is identically equal to an odd function. Which is not possible unless
both are zero. Hence ®w1 − ®w2 = ®z2 − ®z1 = 0 which means that ®w1 = ®w2 and ®z2 = ®z1, therefor the
decomposition of ®v must be unique. This proofs property (i).

Now we need to proof property (ii). This means that any function can be written as the sum of an odd
and even function.

answer: Let f (x) ∈ V be any arbitrary function. Write it as follows
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f (x) =
1
2
f (x) +

1
2
f (x)

Now add and subtract from the RHS 1
2 f (−x), This will not change anything

f (x) =
1
2
f (x) +

1
2
f (x) +

{
1
2
f (−x) −

1
2
f (−x)

}
regroup as follows

f (x) =

{
1
2
f (x) +

1
2
f (−x)

}
+

{
1
2
f (x) −

1
2
f (−x)

}
=

1
2
{ f (x) + f (−x)} +

1
2
{ f (x) − f (−x)}

Now let д(x) = { f (x) + f (−x)}, then to show that д(x) is even, i.e. д(x) ∈ W , need to show that
д(x) − д(−x) = 0

д(x) − д(−x) = { f (x) + f (−x)} − { f (−x) + f (−(−x))}

= { f (x) + f (−x)} − { f (−x) + f (x)}

= f (x) − f (x) + f (−x) − f (−x)

= 0

Hence д(x) is even.

Now let h(x) = { f (x) − f (−x)}, to show that h(x) is odd, i.e. h(x) ∈ Z , we need to show that h(−x) =
−h(x) or h(−x) + h(x) = 0

h(−x) + h(x) = { f (−x) − f (−(−x))} + { f (x) − f (−x)}

= { f (−x) − f (x)} + { f (x) − f (−x)}

= f (−x) − f (−x) − f (x) + f (x)

= 0

Hence h(x) is odd.

Hence we showed that f (x) = 1
2even function + 1

2odd function. Hence f (x) = fe (x)+ fo(x) where fe (x)
is the even part of f (x) and fo(x) is the odd part of f (x).

side note: Let the basis of the subspaceW be {w1,w2, · · · ,wn}, and let the basis of the subspace Z be
{z1, z2, · · · , zn}. Property (ii) implies that a basis of V can be taken as the union of these 2 sets of bases,
i.e. basis for V = {w1,w2, · · · ,wn} ∪ {z1, z2, · · · , zn} = {w1,w2, · · · ,wn, z1, z2, · · · , zn}
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Part C

Problem: Show that every function can be uniquely written as the sum of even and odd function.

Solution: From part(b), since we showed that the subspaces of even and odd functions are complemen-
tary, hence this follows from the property of such subspaces.

2.1.2 Problem 2

Problem: Prove that a linear system Ax = b ofm linear equations in n unknowns has either

1. exactly one solution

2. infinitely many solutions

3. no solution

answer:

What I have to show is that if more than one solution exist, then there is infinite number of solutions.
In other words, one can not have finitely countable number of solutions other than zero or 1.

Assume there exist 2 solutions. x1, x2, hence Ax1 = b, and Ax2 = b.

x1

x2

b

A

A

We can show that any point on the line joining the vectors x1, x2 is also a solution.

x1 x2
(x2-x1)

v

Vector v can be parameterized by scalar t where

v = x1 + t(x2 − x1)

By changing t we can obtain new vector v. There are infinitely many such vectors as t can have infinitely
many values.
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Av = A(x1 + t(x2 − x1))

= A(x1) +A(t(x2 − x1)) by linearity of A
= A(x1) + tA(x2 − x1) by linearity of A
= A(x1) + t(A(x2) −A(x1)) by linearity of A

But A(x1) = b, and A(x2) = b, hence the above becomes

Av = b + t(b − b)

= b

Therefor, v, which is different than x1 and x2 is also a solution. Hence if there are 2 solutions, then
we can always find an arbitrary new solution from these 2 solutions, Hence there are infinitely many
solutions. QED

2.1.3 Problem 3

Problem: Prove that the inner product defined by 〈f ,д〉 =
∫b
a f (x)д(x) + f ′(x)д′(x)dx satisfy the con-

ditions of an inner product on the space on continuously differentiable functions on the interval [a,b]
Answer:

An inner product must satisfy the following properties. Let f ,д,w be continuously differentiable func-
tions on [a,b] and let t be scalar.

1. 〈f ,д〉 = 〈д, f 〉

2. 〈t f ,д〉 = t 〈f ,д〉

3. 〈f + д,w〉 = 〈f ,w〉 + 〈д,w〉

4. 〈f , f 〉 > 0 if f , 0 or 〈f , f 〉 = 0 iff f = 0

To show property 1. Since

〈f ,д〉 =

∫ b

a
f (x)д(x) + f ′(x)д′(x)dx

Now, since real valued functions are commutative under multiplication (i.e. f (x)д(x) = д(x)f (x)) and
similarly for the derivatives, we can exchange the order of multiplication

〈f ,д〉 =

∫ b

a
д(x)f (x) + д′(x)f ′(x)dx

= 〈д, f 〉

To show property 2:
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〈t f ,д〉 =

∫ b

a
t f (x)д(x) + (t f (x))′д′(x)dx

=

∫ b

a
t f (x)д(x) + t f (x)′д′(x)dx since t is constant

=

∫ b

a
t(f (x)д(x) + f (x)′д′(x))dx

= t

∫ b

a
f (x)д(x) + f (x)′д′(x)dx

= t 〈f ,д〉

To show property 3:

〈f + д,w〉 =

∫ b

a
(f + д)(x)w(x) +

d

dx
(f + д)(x)w ′(x)dx

=

∫ b

a
(f (x) + д(x))w(x) + (f ′(x) + д′(x))w ′(x)dx

Now, since we can distribute multiplication over addition for real valued functions, i.e. (f + д)w =
f w + дw (because function multiplications is a point-by-point multiplication) the above becomes

〈f + д,w〉 =

∫ b

a
{ f (x)w(x) + д(x)w(x)} + { f ′(x)w ′(x) + д′(x)w ′(x)} dx

By linearity of integration operation we can break above integral into the sum of two integrals

〈f + д,w〉 =

∫ b

a
f (x)w(x) + f ′(x)w ′(x)dx +

∫ b

a
д(x)w(x) + д′(x)w ′(x) dx

= 〈f ,w〉 + 〈д,w〉

To show property 4:

〈f , f 〉 =

∫ b

a
f (x) f (x) + f ′(x)f ′(x)dx

=

∫ b

a
[f (x)]2 + [f ′(x)]2 dx

=

∫ b

a
[f (x)]2 dx +

∫ b

a
[f ′(x)]2 dx

Consider
∫b
a [f (x)]2 dx . Since [f (x)]2 can only be positive or zero,This is the same as

∫b
a д(x)dx where

д(x) ≥ 0 over [a,b], Hence
∫b
a д(x)dx = 0 only if д(x) is identically zero over [a,b], but if д(x) = 0, then

[f (x)]2 = 0 or f (x) = 0, which means
∫b
a [f (x)]2 dx = 0.
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Now if f (x) = 0, then the second integral
∫b
a [f ′(x)]2 dx = 0 as well.

Hence 〈f , f 〉 = 0 only if f (x) is identically zero over [a,b]

Hence we showed the 4 properties for this definition of the inner product.

2.1.4 Problem 4

problem: L2 norm on the interval [a,b] is defined as 〈f , f 〉 =
∫a
b [f (x)]2 dx

Find the cubic polynomial that best approximates the function ex on the interval [0, 1] by minimizing
the L2 error.

solution:

Let p(x) = a0 + a1x + a2x
2 + a3x

3, hence we need to have 4 equations to solve for a0,a1,a2,a3

Let the д(x) = p(x) − ex , which is the error function.

From the definition, the square of norm of this error is

|E |2 = ‖p(x) − ex ‖2

= ‖д(x)‖2

= 〈д(x),д(x)〉

=

∫ 1

0
[д(x)]2 dx

=

∫ 1

0
[p(x) − ex ]2 dx

|E |2 =

∫ 1

0
[p(x) − ex ]2 dx =

∫ 1

0

[
a0 + a1x + a2x

2 + a3x
3 − ex

] 2
dx

= −
1
2
+
e2

2
+ 2a0 + a

2
0 + a0a1 +

a21
3
+ 4a2+

2a0a2
3
+
a22
5
+ a1(−2 +

a2
2
+
2a3
5

) − 12a3+

a0a3
2
+
a2a3
3
+
a23
7
+ e(−2a0 − 2a2 + 4a3)

Now minimize this error with respect to each of the coefficients in turn to generate 4 equations to solve.
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d |E |2

da0
= 0 = 2 − 2e + 2a0 + a1 +

2a2
3
+
a3
2

d |E |2

da1
= 0 = −2 + a0 +

2a1
3
+
a2
2
+
2a3
5

d |E |2

da2
= 0 = 4 − 2e +

2a0
3
+
a1
2
+
2a2
5
+
a3
3

d |E |2

da4
= 0 = −12 + 4e +

a0
2
+
2a1
5
+
a2
3
+
2a3
7

Hence, set up the above 4 equations in matrix form, we obtain
2 1 2

3
1
2

1 2
3

1
2

2
5

2
3

1
2

2
5

1
3

1
2

2
5

1
3

2
7



a0

a1

a2

a3


=


2e − 2

2

2e − 4

12 − 4e


Solving for a′s using Gaussian elimination leads to solution

a0 = 0.9906

a1 = 1.0183

a2 = 0.421246

a3 = 0.278625

Hence the best fit cubic polynomial that minimize the error to ex between 0 and 1 is

p(x) = 0.9906 + 1.0183x + 0.421246x2 + 0.278625x3

This is a table of values to compare ex and p(x)
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2.1.5 Problem 5

Problem: A Hilbert space is a function space with a norm. If we consider the space of continuous
functions on [a,b] with L2 norm, it is Hilbert space H . A key step in showing that functions on this
space can be approximated using a countable (i.e. indexed by integers) orthonormal set is the Bessel
Inequality

n∑
i=1

〈f ,ϕi 〉
2 ≤ ‖ f ‖2 < ∞

where ϕi is an element of the orthonormal set and f is the element of the Hilbert space being approxi-
mated.

If we approximate f (x) by∑n
i=1 αiϕi (x)with αi = 〈f ,ϕi 〉 . Start by stating the error in the approximation

to prove the Bessel inequality.

solution

In this solution, I use the analogy to the normal Euclidean space just as a guideline.

αi = 〈f ,ϕi 〉 is the projection of the function f onto the basis ϕi . This is similar to extracting the ith
coordinate of a vector. The expression αiϕi (x) is then a vector along the direction of the base ϕi , whose
length is the projection of f in the direction of the ith basis. Hence in general,

f (x) =
Number of Basis∑

i=1
αiϕi (x)

This is similar to the Euclidean coordinate system where we write ®v = x®i + y®j + z®k where ®i, ®j, ®k are the
basis in this space and x,y, z are the coordinates of the vector. A vector coordinate is the length of the
projection of the vector onto each specific basis. The expression for f (x) above is a generalization of
this concept to the function space and to an arbitrary number of basis.

And similarly to what we do in the Euclidean space, the ’length’ of the vector using L2 norm is ‖ ®v ‖2 =√
x2 + y2 + z2, hence ‖ ®v ‖22 = x2 + y2 + z2. This is generalized to the H space by saying

‖ f ‖2 =
Number of Basis∑

i
(αi )

2

=

Number of Basis∑
i

〈f ,ϕi 〉
2

If the number of basis is infinite, then we write

‖ f ‖2 =
∞∑
i

〈f ,ϕi 〉
2

Therefore, if the number of basis is infinite, and we sum for some finite number of basis less than infinite,
say n, hence the resulting norm must be less than the actual norm we would get if we had added over

all the basis. Hence it is obvious that ‖ f ‖2 ≥
n∑
i

〈f ,ϕi 〉
2 since we terminated the sum earlier, and since

each quantity being summed is positive, then the partial sum must be less than the limit, which is ‖ f ‖2.
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Now we just need to show that the norm finite. If the function itself is finite (meaning its value, or range,
is finite) then each of its projections must be finite (|cosα | ≤ 1). Hence given a function which does
not ”blow” up, then all its components must be finite. Since we are adding finite number of quantities,
each of which is finite in its own, hence the sum must be finite as well. Hence ‖ f ‖ < ∞, or ‖ f ‖2 < ∞

Therefore
n∑
i

〈f ,ϕi 〉
2 ≤ ‖ f ‖2 < ∞

2.2 HW 2

2.2.1 Problem

question: Consider the solution of Ax = b + n where A ism × n matrix, bϵRm, xϵRn and n is vector of
i.i.d. Gaussian N

(
0,σ 2Im

)
noise vector. (i.e. noise is white Gaussian noise). Determine the best solution

®x

Answer

Let us refer to the observed output (which includes the noise n) as z, hence we write z = b + n where b
is the uncontaminated output (what the observed output would be if there is no noise).

Since the noise n is an additive noise to the output b of the system, the since the noise has zero mean,
then the mean of z will be the same as the mean of b. But b is a deterministic signal which does not
change, hence its mean is its value, hence the mean of z is b .

Now, z is described by a probability density function PDF as follows ( z is in Rm , hence it ism long
vector)

Pr
(
z;

{
µ (z) ,σ 2Im

} )
=

1

(2πσ 2)
m
2
exp

(
−

1
2σ 2 ‖z − µ (z)‖2

)
Pr

(
z;

{
b,σ 2Im

} )
=

1

(2πσ 2)
m
2
exp

(
−

1
2σ 2 ‖z − b‖2

)
But since Ax = b, then the above can be written as

Pr
(
z;

{
Ax,σ 2Im

} )
=

1

(2πσ 2)
m
2
exp

(
−

1
2σ 2 ‖z −Ax‖2

)
Since A is a constant matrix (system is assumed to be time-invariant), hence from the above we see that
the expression gives the probability of observing z for a given x. Hence the best estimate of x would
be the one which maximizes this probability. Instead of maximizing the PDF directly, we maximize its
natural logarithm (a mathematical convenience trick, no more).

Now find the natural logarithm of the above quantity, and find where the result is maximum.
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∂

∂x
ln Pr

(
z;

{
Ax,σ 2Im

} )
=
∂

∂x

(
ln

1

(2πσ 2)
m
2
exp

(
−

1
2σ 2 ‖z −Ax‖2

) )
= ∇x

(
ln

1

(2πσ 2)
m
2
+ ln exp

(
−

1
2σ 2 ‖z −Ax‖2

) )

=

0︷                ︸︸                ︷
∇x

(
ln

1

(2πσ 2)
m
2

)
+ ∇x

(
−

1
2σ 2 ‖z −Ax‖2

)
= −

1
2σ 2∇x

(
‖z −Ax‖2

)
(1)

Start withm = n = 1, hence the above becomes1

∂

∂x
ln Pr

(
z;

{
Ax,σ 2Im

} )
= −

1
2σ 2∇x1

(
z21 + a

2
11x

2
1 − 2z1a11x1

)
= −

1
2σ 2

(
2a211x1 − 2a11z1

)
= −

1
σ 2

(
a211x1 − a11z1

)
Set the above to zero and solve for x1

0 = (a11x1 − z1)

x1 =
z1
a11

Hence
x1 =

z1
a11

This matches the least squares solution x1 =
(
ATA

) −1
AT z1 → x1 = (a11a11)

−1 a11z1 =
z1
a11

Now I need to do this form = n = 2, and assuming that var (z1) = var (z1). We can start from equation
(1) above, shown again below

1I will start the index at 1 to be Matlab friendly
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∂

∂x
ln Pr

(
z;

{
Ax,σ 2Im

} )
= −

1
2σ 2∇x

(
‖z −Ax‖2

)
−2σ 2 ∂

∂x
ln Pr

(
z;

{
Ax,σ 2Im

} )
= ∇x

(
‖z −Ax‖2

)
= ∇x

©­«






(
z1

z2

)
−

(
a11 a12

a21 a22

) (
x1

x2

) 




2
2

ª®¬
= ∇x

©­«






(
z1

z2

)
−

(
a11x1 + a12x2

a21x1 + a22x2

) 




2
2

ª®¬
= ∇x

©­«






(
z1 − (a11x1 + a12x2)

z2 − (a21x1 + a22x2)

) 




2
2

ª®¬
= ∇x

(
[z1 − (a11x1 + a12x2)]

2 + [z2 − (a21x1 + a22x2)]
2)

Let

f (x1, x2) = [z1 − (a11x1 + a12x2)]
2 + [z2 − (a21x1 + a22x2)]

2

=
[
z21 + (a11x1 + a12x2)

2 − 2z1 (a11x1 + a12x2)
]
+

[
z22 + (a21x1 + a22x2)

2 − 2z2 (a21x1 + a22x2)
]

=
[
z21 + a

2
11x

2
1 + a

2
12x

2
2 + 2a11a12x1x2 − 2z1a11x1 − 2z1a12x2

]
+[

z22 + a
2
21x

2
1 + a

2
22x

2
2 + 2a21a22x1x2 − 2z2a21x1 − 2z2a22x2

]
Then

∇x (f (x1, x2)) =

(
∂f (x1,x2)

∂x1
∂f (x1,x2)

∂x2

)
so

∂ f (x1, x2)

∂x1
=

[
0 + 2a211x1 + 0 + 2a11a12x2 − 2z1a11 − 0

]
+

[
0 + 2a221x1 + 0 + 2a21a22x2 − 2z2a21 − 0

]
= 2a211x1 + 2a11a12x2 − 2z1a11 + 2a

2
21x1 + 2a21a22x2 − 2z2a21

= x1
(
2a211 + 2a

2
21

)
+ x2 (2a11a12 + 2a21a22) − 2z1a11 − 2z2a21

and

∂ f (x1, x2)

∂x2
=

[
0 + 0 + 2a212x2 + 2a11a12x1 − 0 − 2z1a12

]
+

[
0 + 0 + 2a222x2 + 2a21a22x1 − 0 − 2z2a22

]
= 2a212x2 + 2a11a12x1 − 2z1a12 + 2a

2
22x2 + 2a21a22x1 − 2z2a22

= x1 (2a11a12 + 2a21a22) + x2
(
2a212 + 2a

2
22

)
− 2z1a12 − 2z2a22

Hence we obtain that
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∂

∂x
ln Pr

(
z;

{
Ax,σ 2Im

} )
= −

1
2σ 2∇x (f (x1, x2))

= −
1
2σ 2

(
x1

(
2a211 + 2a

2
21

)
+ x2 (2a11a12 + 2a21a22) − 2z1a11 − 2z2a21

x1 (2a11a12 + 2a21a22) + x2
(
2a212 + 2a

2
22

)
− 2z1a12 − 2z2a22

)
=

(
0

0

)
Hence

x1
(
2a211 + 2a

2
21

)
+ x2 (2a11a12 + 2a21a22) − 2z1a11 − 2z2a21 = 0

and
x1 (2a11a12 + 2a21a22) + x2

(
2a212 + 2a

2
22

)
− 2z1a12 − 2z2a22 = 0

so, solve for x1, x2. Write as Ax = b and solve:( (
2a211 + 2a

2
21

)
(2a11a12 + 2a21a22)

(2a11a12 + 2a21a22)
(
2a212 + 2a

2
22

) ) (
x1

x2

)
=

(
2z1a11 + 2z2a21
2z1a12 + 2z2a22

)
Solve for (

x1

x2

)
=

( (
2a211 + 2a

2
21

)
(2a11a12 + 2a21a22)

(2a11a12 + 2a21a22)
(
2a212 + 2a

2
22

) ) −1 (
2z1a11 + 2z2a21
2z1a12 + 2z2a22

)

=

( (
2a212 + 2a

2
22

)
− (2a11a12 + 2a21a22)

− (2a11a12 + 2a21a22)
(
2a211 + 2a

2
21

) ) (
2z1a11 + 2z2a21
2z1a12 + 2z2a22

)
(
2a211 + 2a

2
21

) (
2a212 + 2a

2
22

)
− (2a11a12 + 2a21a22) (2a11a12 + 2a21a22)

=

( (
2a212 + 2a

2
22

)
(2z1a11 + 2z2a21) − (2a11a12 + 2a21a22) (2z1a12 + 2z2a22)

− (2a11a12 + 2a21a22) (2z1a11 + 2z2a21) +
(
2a211 + 2a

2
21

)
(2z1a12 + 2z2a22)

)
(
2a211 + 2a

2
21

) (
2a212 + 2a

2
22

)
− (2a11a12 + 2a21a22) (2a11a12 + 2a21a22)

=

(
4a11z1a222 + 4a

2
12a21z2 − 4a11a12z2a22 − 4z1a12a21a22

4z1a12a221 + 4a
2
11z2a22 − 4a11z1a21a22 − 4a11a12a21z2

)
4a211a

2
22 − 8a11a12a21a22 + 4a212a

2
21

=
©­«
4a11z1a222+4a

2
12a21z2−4a11a12z2a22−4z1a12a21a22

4a211a
2
22−8a11a12a21a22+4a

2
12a

2
21

4z1a12a221+4a
2
11z2a22−4a11z1a21a22−4a11a12a21z2

4a211a
2
22−8a11a12a21a22+4a

2
12a

2
21

ª®¬
so
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x1 =
4a11z1a222 + 4a

2
12a21z2 − 4a11a12z2a22 − 4z1a12a21a22

4a211a
2
22 − 8a11a12a21a22 + 4a212a

2
21

=

(
z1a22 − a12z2
a11a22 − a12a21

)
and

x2 =
4z1a12a221 + 4a

2
11z2a22 − 4a11z1a21a22 − 4a11a12a21z2

4a211a
2
22 − 8a11a12a21a22 + 4a212a

2
21

=

(
a11z2 − z1a21
a11a22 − a12a21

)
Hence

(
x1

x2

)
=

©­«
(

z1a22−a12z2
a11a22−a12a21

)(
a11z2−z1a21
a11a22−a12a21

) ª®¬ (2)

is the least squares error. To validate

(
a11 a12

a21 a22

) (
x1

x2

)
=

(
z1

z2

)
(
x1

x2

)
=

©­«
(
a11 a12

a21 a22

)T (
a11 a12

a21 a22

) ª®¬
−1 (

a11 a12

a21 a22

)T (
z1

z2

)
=

( (
a11 a21

a12 a22

) (
a11 a12

a21 a22

) ) −1 (
a11 a21

a12 a22

) (
z1

z2

)
=

(
a211 + a

2
21 a11a12 + a21a22

a11a12 + a21a22 a212 + a
2
22

) −1 (
a11z1 + a21z2

z1a12 + z2a22

)
=

©­«
(
a212+a

2
22

)
(a11a22−a12a21)2

−
a11a12+a21a22

(a11a22−a12a21)2

−
a11a12+a21a22

(a11a22−a12a21)2

(
a211+a

2
21

)
(a11a22−a12a21)2

ª®¬
(
a11z1 + a21z2

z1a12 + z2a22

)
=

(
(z1a22−a12z2)
a11a22−a12a21
a11z2−z1a21
a11a22−a12a21

)
(3)

Compare equations (2) and (3) above, they are the same. OK, confirmed.
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2.2.2 appendix
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2.3 HW 3

2.3.1 Problem 1

Question: By setting the derivative to zero, find the value of b1 that minimizes

‖b1 sinx − cosx ‖2 =

2π∫
0

(b1 sinx − cosx)2 dx

compare with the Fourier coefficient b1

Answer:

First I thought it might be a good idea to refresh myself with Fourier series and how it comes about
from geometrical perspective. Understanding how a function can be represented using Fourier series
can be made easier by making an analogy of how a vector is represented using vector basis.

We know from basic Euclidean geometry, that a vector in the standard 3 dimensional space is written
as the sum of its projections on the 3 basis vectors. When we write ®v = a®i + b®j + c®k , then in this case, a
is the projection of the vector ®v onto the direction of the base vector ®i , and similarly for the numbers b
and c . The numbers a,b, c are called the coordinates of the vector ®v in this particular coordinate system.

The same vector ®v can then have different coordinate values depending on which coordinates system
we are making our measurements in, but it the same exact vector. Hence a vector is invariant under
coordinate transformation, but its representation (the coordinates) will change. This diagram below
illustrates the above

x

y

z

v

i
j

k

b

c

v  ai bj ck

Representing a vector as the sum of its projections on the coordinates system

Now that we know how a vector is represented by adding its projections along the direction of each base
vector, we are ready to make the switch to a new and exciting world, where vectors become functions
and the number of basis instead of being fixed at 3 become very large, in fact, it become infinitely large.
This new vector space is called the Hilbert space.

Our goal is to express, or represent a function such as f (x) using as basis the functions sin and cos. This
leads to Fourier series representation of a function. One of the issues to consider right away, is what
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basis to use. There are many families of basis to select. Here we select the sin and cos functions as the
basis.

As long as each base is orthogonal to each other (using a new definition of what it means to have two
functions orthogonal to each others).

Hence by selecting sin (x) , sin (2x) , sin (3x) , · · · , and cos (x) , cos (2x) , · · · . I.e. sin (nx) , cos (nx) for n
over all the integers from 0 · · · ∞. These basis work since any two different basis have zero as their dot
product using the following definition of dot product, therefore they are orthogonal to each others.

In Hilbert space, two functions are orthogonal to each others if their dot product is zero, defined as
follows between the function f (x) ,д (x)

〈f (x) ,д (x)〉 =

2π∫
0

f (x)д (x)dx

So, now when we are given a function f (x) and asked for its representation with respect to the coordi-
nate system called the fourier coordinates system, we follow the same idea as with normal vectors, and
write

f (x) = (projection of f (x) onto first basis) × first basis
+ (projection of f (x) onto second basis) × second basis
+ · · ·

The above is the same as we did with Euclidean space. We now need to know how to find a projection
of a function such as f (x) onto a base function such as sin (x). This diagram shows how to do find one
such projection of f (x) onto one base function sin (x)
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fx cos 
fx,sinx

sinx



fx

sinx

Step1: Find the length of the projection of a function f(x) on one of the basis (sin(x) in this example).

Step2: To turn  the projection (which is just a number) into a vector, we need to multiply this number by a 

unit vector along the same direction. This unit vector is found by dividing the “vector” sin(x) by the norm of 

the “vector” sin(x). This gives us the vector “p”, which is the projection vector of f(x) onto sin(x)



fx

sinx

p 

Length of projection

fx, sinx

sinx

unit vector along sin(x)

sinx

sinx

p 
fx, sinx

sinx2
sinx

p 
fx, sinx

sinx, sinx
sinx

p 
fx,sinx

sinx,sinx
sinx

The derivation of the projection vector P is shown below

The above tells us that the coordinate of f (x) along sin (x) is given by

〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉

Let us express f (x) using the first few coordinates. The first base is cos (0x) = 1, the second base is
cos (x) , the third base is cos (2x), etc… and now for the sin basis, again we use sin (x) , sin (2x) , · · · .
Hence we have

f (x) =
〈f (x) , cos (0x)〉

〈cos (0x) , cos (0x)〉
cos (0x)+

〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
cos (x)+

〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
cos (2x)+· · ·+

〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
sin (x)+

〈f (x) , sin (2x)〉

〈sin (2x) , sin (2x)〉
sin (2x)+· · ·

The standard is to write the above in the order of increasing the frequency of each base, hence we write

f (x) =
〈f (x) , cos (0x)〉

〈cos (0x) , cos (0x)〉
cos (0x) +

〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
cos (x) +

〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
sin (x) +

〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
cos (2x) +

〈f (x) , sin (2x)〉

〈sin (2x) , sin (2x)〉
sin (2x) + · · ·

=
〈f (x) , 1〉

〈1, 1〉
+

〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
cos (x) +

〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
sin (x) +

〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
cos (2x) +

〈f (x) , sin (2x)〉

〈sin (2x) , sin (2x)〉
sin (2x) + · · ·

The coordinates are given standard names: the first one is called a0, the second is called a1 the third is
called b1, etc.. i.e. the coordinates of f (x) on the cos basis are called a0,a1, · · · and the coordinates of
f (x) on the sin basis are called b1,b2, · · · . Notice that b0 does not exist, since sin (0x) = 0.
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So, we write the above as

f (x) =

a0︷      ︸︸      ︷
〈f (x) , 1〉

〈1, 1〉
+

a1︷                 ︸︸                 ︷
〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
cos (x) +

b1︷                ︸︸                ︷
〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
sin (x) +

a2︷                    ︸︸                    ︷
〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
cos (2x) +

b2︷                   ︸︸                   ︷
〈f (x) , sin (2x)〉

〈sin (2x) , sin (2x)〉
sin (2x) + · · ·

= a0 + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x) + · · ·

Using the above definition of an inner product, we know how to calculate each of the coordinates an,bn :

a0 =
〈f (x) , 1〉

〈1, 1〉
=

∫2π
0

f (x) × 1dx∫2π
0

1 × 1dx
=

∫2π
0

f (x)dx

2π

a1 =
〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
=

∫2π
0

f (x) × cos (x)dx∫2π
0

cos (x) × cos (x)dx
=

∫2π
0

f (x) × cos (x)dx

π

a2 =
〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
=

∫2π
0

f (x) × cos (2x)dx∫2π
0

cos (2x) × cos (2x)dx
=

1
π

∫ 2π

0
f (x) × cos (2x)dx

Hence we see that

a0 =
1
2π

∫ 2π

0
f (x)dx

an =
1
π

∫ 2π

0
f (x) cos(nx)dx n > 1

Similarly for the bn coordinates, we obtain

b1 =
〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
=

∫2π
0

f (x) × sin (x)dx∫2π
0

sin (x) × sin (x)dx
=

1
π

∫ 2π

0
f (x) sin (x)dx

bn =
1
π

∫ 2π

0
f (x) sin (nx)dx

We know how to measure the norm of a vector in our standard Euclidean space, so we need to decide
how to measure the norm of a function in Hilbert space. For this we use the following definition

‖ f (x)‖ =

√√√√√2π∫
0

{ f (x)}2 dx

I used the above range of integration because for fourier series, the basis used are the sin (x) , cos (x).

Now that we have reviewed the fourier series expansion, let us try to answer the actual question.
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First, use calculus to answer the question itself:

∂

∂b1

(
‖b1 sinx − cosx ‖2

)
=
∂

∂b1

©­«
2π∫
0

(b1 sinx − cosx)2 dx
ª®¬

=
∂

∂b1

2π∫
0

(
b21 sin

2 x + cos2 x − 2b1 sinx cosx
)
dx

=
∂

∂b1

©­«b21
2π∫
0

sin2 xdx +

2π∫
0

cos2 xdx − 2b1

2π∫
0

sinx cosxdx
ª®¬

=
∂

∂b1

(
b21

[
x

2
−
1
4
sin 2x

] 2π
0
+

[
x

2
+
1
4
sin 2x

] 2π
0

− 2b1

[
−1
2

cos2 x

] 2π
0

)
=
∂

∂b1

(
b21 [π ] + [π ] + b1

[
cos2 2π − cos2 0

] )
=
∂

∂b1

(
πb21 + π

)
= 2b1

Hence for minimum, b1 = 0.

Now the question is asking to compare this to the fourier coefficient b1, i.e. with the coordinate b1 of
the function being expanded. The question did not tell us what is f (x) itself. But from geometry we
deduce that the problem is to minimize the distance between the function f (x) and the basis, which is
sin (x) in this case. Hence b1 sinx − cosx is the vector between the function being expressed and the
basis sin (x) . Hence f (x) = cos (x) in this example, as shown in this diagram


sinx

Minimize the 

length of this 

vector 

b1

fx,sinx

sinx,sinx

Z

b1 sinx  cosx  Z

b1 sinx  cosx  Z

b1 sinx  cosx  Z

cosx
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Hence, we now need to find b1 given that f (x) is cos (x) in this example:

b1 =
〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉

=
〈cos (x) , sin (x)〉
〈sin (x) , sin (x)〉

=

∫2π
0

cos (x) × sin (x)dx∫2π
0

sin (x) × sin (x)dx

=
0
π

= 0

Hence confirmed to be the same.

2.3.2 Problem 2

Show that the complex exponential ϕ (x) = a0e
inx 2 are eigen functions of the convolution operator

д (x) = (k ∗ f ) (x) =

∞∫
−∞

k (x − τ ) f (τ )dτ

For k ∈ L2 (−∞,∞) and how representing f (x) as a linear combination of complex exponential greatly
simplifies this equation

Answer: We need to show that by applying the convolution operator on ϕ (x) , we obtain a scaled
version of ϕ (x), i.e. need to show that

д (x)c f (x )=ϕ(x ) = λϕ (x)

Where λ is a scalar. From the above definition, we obtain

д (x) = (k ∗ ϕ) (x)

=

∫∞

−∞

k (x − τ )ϕ (τ )dτ

=

∫∞

−∞

k (x − τ )a0e
inτdτ

Using the commutative property of convolution, where (k ∗ ϕ) (x) = (ϕ ∗ k) (x) , we can write the above
as

д (x) = (ϕ ∗ k) (x)

=

∫∞

−∞

k (τ )a0e
in(x−τ )dτ

= a0

∫∞

−∞

k (τ ) einxe−inτdτ

= a0e
inx

∫∞

−∞

k (τ ) e−inτdτ

2note: I renamed eikx in the original question to einx so as not to confuse with the k function used in the definition of the
convolution operator
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But
∫∞
−∞

k (τ ) e−inτdτ is the fourier transform of the function k (x), Call this fourier transform z (k (τ )) =
X (n). Hence

д (x) = (ϕ ∗ k) (x)

= a0X (n) eiωx

= λeiωx

Where I called a0X (n) as the parameter λ since a0X (n) does not depend on x but depends on n, I.e.
given the function k (τ ), we can determine its Fourier transform for the specific n provided, and this
Fourier transform integral, which will evaluate to some value, is multiplied with a0 to obtain the scaling
factor by which we scale einx which is ϕ (x) with. Hence we showed that ϕ (x) is an eigenfunction of
д (x) .

Now for the second part. If f (x) can be written as linear combination of complex exponential functions

as in f (x) =
N∑
n=1

ane
inx , then we write

д (x) = (k ∗ f ) (x)

=

∫∞

−∞

k (x − τ ) f (τ )dτ

=

∫∞

−∞

k (τ ) f (x − τ )dτ

=

∫∞

−∞

k (τ )

(
N∑
n=1

ane
in(x−τ )

)
dτ

=

∫∞

−∞

k (τ )

(
N∑
n=1

ane
inxe−inτ

)
dτ

=

∫∞

−∞

(
N∑
n=1

k (τ )ane
inxe−inτ

)
dτ

=
N∑
n=1

∫∞

−∞

k (τ )ane
inxe−inτdτ

=
N∑
n=1

ane
inx

∫∞

−∞

k (τ ) e−inτdτ

But
∫∞
−∞

k (τ ) e−inτdτ is the Fourier transform of k (τ ), call it X (n) , hence the above becomes

д (x) =
N∑
n=1

ane
inxX (n)

Hence we have replaced the integration operation with a summation operation and we have simplified
this equation.

2.3.3 Problem 3

The transpose of a matrix can be defined as the matrix AT such that 〈Ax,y〉 =
〈
x,ATy

〉
This definition generalizes to function operators like the fourier transformд (ξ ) = z { f } =

∫∞
−∞

f (x) e−i2π ξ xdx
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Find the adjoint zT {д} using the definition above.

Answer:

First, a geometric view of a matrix transpose can be illustrated in this diagram

A

x

y

B

v  By

b  Ax

IF b,y  x,v THEN

B  AT

END IF

Find the image of the vector x under A, say b.

Now select some vector y in the column space of A. Find the dot product of b and y, call the result k.

Now find the image of y under B, say v. Find the dot product of v and x. If this dot product equals k, 

then this means that the matrix B is the transpose of A.

Now let us try to apply the above diagram to find the adjoint operator we need. Instead of using the
Matrix notation ofA andAT , we now use the notation of L and L∗ , where here L∗ is the adjoint operator
of L. Hence we seek to find an operator L∗ such that 〈Lf ,q〉 = 〈f , L∗q〉

We are givenwhat L is, it is the fourier transform, it takes the function f (x) and generatesд (ξ ) according
to this operation

д (ξ ) = z { f } =

∫∞

−∞

f (x) e−i2π ξ xdx

For the inner product operation on the space of complex functions over the infinite domain, I will use
the following definition

〈f ,д〉 =

∫∞

−∞

f д dx

Hence, applying 〈Lf ,q〉 = 〈f , L∗q〉

〈Lf ,q〉 = 〈f , L∗q〉

〈д (ξ ) ,q〉 = 〈f , L∗q〉

〈 д(ξ )︷                   ︸︸                   ︷∫∞

−∞

f (x) e−i2π ξ xdx , q

〉
= 〈f (x) , (L∗q)〉∫∞

−∞

(∫∞

−∞

f (x) e−i2π ξ xdx

)
q dξ =

∫∞

−∞

f (x) (L∗q)dx∫∞

−∞

(∫∞

−∞

f (x)ei2π ξ xdx

)
q dξ =

∫∞

−∞

f (x) (L∗q)dx
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Exchanging the order of integration gives∫∞

−∞

f (x)

(∫∞

−∞

q ei2π ξ xdξ

)
dx =

∫∞

−∞

f (x) (L∗q)dx

Hence we see that ∫∞

−∞

q ei2π ξ xdξ = L∗q

So, the adjoint operator is the inverse fourier transform.

2.4 HW 4

Moved to my main web page.
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