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1 Problem 1

Question: By setting the derivative to zero, find the value of b1 that minimizes

‖b1 sinx − cosx ‖2 =

2π∫
0

(b1 sinx − cosx)2 dx

compare with the Fourier coefficient b1

Answer:

First I thought it might be a good idea to refresh myself with Fourier series and how it comes
about from geometrical perspective. Understanding how a function can be represented using
Fourier series can be made easier by making an analogy of how a vector is represented using
vector basis.

We know from basic Euclidean geometry, that a vector in the standard 3 dimensional space is
written as the sum of its projections on the 3 basis vectors. When we write ®v = a®i + b®j + c®k ,
then in this case, a is the projection of the vector ®v onto the direction of the base vector ®i , and
similarly for the numbers b and c . The numbers a,b, c are called the coordinates of the vector ®v
in this particular coordinate system.

The same vector ®v can then have different coordinate values depending on which coordinates
system we are making our measurements in, but it the same exact vector. Hence a vector is
invariant under coordinate transformation, but its representation (the coordinates) will change.
This diagram below illustrates the above
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v  ai bj ck

Representing a vector as the sum of its projections on the coordinates system

Now that we know how a vector is represented by adding its projections along the direction of
each base vector, we are ready to make the switch to a new and exciting world, where vectors
become functions and the number of basis instead of being fixed at 3 become very large, in
fact, it become infinitely large. This new vector space is called the Hilbert space.

Our goal is to express, or represent a function such as f (x) using as basis the functions sin
and cos. This leads to Fourier series representation of a function. One of the issues to consider
right away, is what basis to use. There are many families of basis to select. Here we select the
sin and cos functions as the basis.

As long as each base is orthogonal to each other (using a new definition of what it means to
have two functions orthogonal to each others).

Hence by selecting sin (x) , sin (2x) , sin (3x) , · · · , and cos (x) , cos (2x) , · · · . I.e. sin (nx) , cos (nx)
for n over all the integers from 0 · · · ∞. These basis work since any two different basis have
zero as their dot product using the following definition of dot product, therefore they are
orthogonal to each others.

In Hilbert space, two functions are orthogonal to each others if their dot product is zero, defined
as follows between the function f (x) ,д (x)

〈f (x) ,д (x)〉 =

2π∫
0

f (x)д (x)dx

So, now when we are given a function f (x) and asked for its representation with respect to
the coordinate system called the fourier coordinates system, we follow the same idea as with
normal vectors, and write

f (x) = (projection of f (x) onto first basis) × first basis
+ (projection of f (x) onto second basis) × second basis
+ · · ·
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The above is the same as we did with Euclidean space. We now need to know how to find a
projection of a function such as f (x) onto a base function such as sin (x). This diagram shows
how to do find one such projection of f (x) onto one base function sin (x)

fx cos 
fx,sinx

sinx



fx

sinx

Step1: Find the length of the projection of a function f(x) on one of the basis (sin(x) in this example).

Step2: To turn  the projection (which is just a number) into a vector, we need to multiply this number by a 

unit vector along the same direction. This unit vector is found by dividing the “vector” sin(x) by the norm of 

the “vector” sin(x). This gives us the vector “p”, which is the projection vector of f(x) onto sin(x)



fx

sinx

p 

Length of projection

fx, sinx

sinx

unit vector along sin(x)

sinx

sinx

p 
fx, sinx

sinx2
sinx

p 
fx, sinx

sinx, sinx
sinx

p 
fx,sinx

sinx,sinx
sinx

The derivation of the projection vector P is shown below

The above tells us that the coordinate of f (x) along sin (x) is given by

〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉

Let us express f (x) using the first few coordinates. The first base is cos (0x) = 1, the sec-
ond base is cos (x) , the third base is cos (2x), etc… and now for the sin basis, again we use
sin (x) , sin (2x) , · · · . Hence we have

f (x) =
〈f (x) , cos (0x)〉

〈cos (0x) , cos (0x)〉
cos (0x)+

〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
cos (x)+

〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
cos (2x)+· · ·+

〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
sin (x)+

〈f (x) , sin (2x)〉

〈sin (2x) , sin (2x)〉
sin (2x)+· · ·

The standard is to write the above in the order of increasing the frequency of each base, hence
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we write

f (x) =
〈f (x) , cos (0x)〉

〈cos (0x) , cos (0x)〉
cos (0x) +

〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
cos (x) +

〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
sin (x) +

〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
cos (2x) +

〈f (x) , sin (2x)〉

〈sin (2x) , sin (2x)〉
sin (2x) + · · ·

=
〈f (x) , 1〉

〈1, 1〉
+

〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
cos (x) +

〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
sin (x) +

〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
cos (2x) +

〈f (x) , sin (2x)〉

〈sin (2x) , sin (2x)〉
sin (2x) + · · ·

The coordinates are given standard names: the first one is called a0, the second is called a1 the
third is called b1, etc.. i.e. the coordinates of f (x) on the cos basis are called a0,a1, · · · and the
coordinates of f (x) on the sin basis are called b1,b2, · · · . Notice that b0 does not exist, since
sin (0x) = 0.

So, we write the above as

f (x) =

a0︷      ︸︸      ︷
〈f (x) , 1〉

〈1, 1〉
+

a1︷                 ︸︸                 ︷
〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
cos (x) +

b1︷                ︸︸                ︷
〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
sin (x) +

a2︷                    ︸︸                    ︷
〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
cos (2x) +

b2︷                   ︸︸                   ︷
〈f (x) , sin (2x)〉

〈sin (2x) , sin (2x)〉
sin (2x) + · · ·

= a0 + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x) + · · ·

Using the above definition of an inner product, we know how to calculate each of the coordi-
nates an,bn :

a0 =
〈f (x) , 1〉

〈1, 1〉
=

∫2π
0

f (x) × 1dx∫2π
0

1 × 1dx
=

∫2π
0

f (x)dx

2π

a1 =
〈f (x) , cos (x)〉

〈cos (x) , cos (x)〉
=

∫2π
0

f (x) × cos (x)dx∫2π
0

cos (x) × cos (x)dx
=

∫2π
0

f (x) × cos (x)dx

π

a2 =
〈f (x) , cos (2x)〉

〈cos (2x) , cos (2x)〉
=

∫2π
0

f (x) × cos (2x)dx∫2π
0

cos (2x) × cos (2x)dx
=

1
π

∫ 2π

0
f (x) × cos (2x)dx

Hence we see that

a0 =
1
2π

∫ 2π

0
f (x)dx

an =
1
π

∫ 2π

0
f (x) cos(nx)dx n > 1

Similarly for the bn coordinates, we obtain

b1 =
〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉
=

∫2π
0

f (x) × sin (x)dx∫2π
0

sin (x) × sin (x)dx
=

1
π

∫ 2π

0
f (x) sin (x)dx

bn =
1
π

∫ 2π

0
f (x) sin (nx)dx



5

We know how to measure the norm of a vector in our standard Euclidean space, so we need to
decide how to measure the norm of a function in Hilbert space. For this we use the following
definition

‖ f (x)‖ =

√√√√√2π∫
0

{ f (x)}2 dx

I used the above range of integration because for fourier series, the basis used are the sin (x) , cos (x).

Now that we have reviewed the fourier series expansion, let us try to answer the actual question.

First, use calculus to answer the question itself:

∂

∂b1

(
‖b1 sinx − cosx ‖2

)
=
∂

∂b1

©­«
2π∫
0

(b1 sinx − cosx)2 dx
ª®¬

=
∂

∂b1

2π∫
0

(
b21 sin

2 x + cos2 x − 2b1 sinx cosx
)
dx

=
∂

∂b1

©­«b21
2π∫
0

sin2 xdx +

2π∫
0

cos2 xdx − 2b1

2π∫
0

sinx cosxdx
ª®¬

=
∂

∂b1

(
b21

[
x

2
−
1
4
sin 2x

] 2π
0
+

[
x

2
+
1
4
sin 2x

] 2π
0

− 2b1

[
−1
2

cos2 x

] 2π
0

)
=
∂

∂b1

(
b21 [π ] + [π ] + b1

[
cos2 2π − cos2 0

] )
=
∂

∂b1

(
πb21 + π

)
= 2b1

Hence for minimum, b1 = 0.

Now the question is asking to compare this to the fourier coefficient b1, i.e. with the coordinate
b1 of the function being expanded. The question did not tell us what is f (x) itself. But from
geometry we deduce that the problem is to minimize the distance between the function f (x)
and the basis, which is sin (x) in this case. Hence b1 sinx − cosx is the vector between the
function being expressed and the basis sin (x) . Hence f (x) = cos (x) in this example, as shown
in this diagram
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
sinx

Minimize the 

length of this 

vector 

b1

fx,sinx

sinx,sinx

Z

b1 sinx  cosx  Z

b1 sinx  cosx  Z

b1 sinx  cosx  Z

cosx

Hence, we now need to find b1 given that f (x) is cos (x) in this example:

b1 =
〈f (x) , sin (x)〉

〈sin (x) , sin (x)〉

=
〈cos (x) , sin (x)〉
〈sin (x) , sin (x)〉

=

∫2π
0

cos (x) × sin (x)dx∫2π
0

sin (x) × sin (x)dx

=
0
π

= 0

Hence confirmed to be the same.

2 Problem 2

Show that the complex exponential ϕ (x) = a0e
inx 1 are eigen functions of the convolution

operator

д (x) = (k ∗ f ) (x) =

∞∫
−∞

k (x − τ ) f (τ )dτ

For k ∈ L2 (−∞,∞) and how representing f (x) as a linear combination of complex exponential
greatly simplifies this equation

1note: I renamed eikx in the original question to einx so as not to confuse with the k function used in the
definition of the convolution operator
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Answer: We need to show that by applying the convolution operator on ϕ (x) , we obtain a
scaled version of ϕ (x), i.e. need to show that

д (x)c f (x)=ϕ(x) = λϕ (x)

Where λ is a scalar. From the above definition, we obtain

д (x) = (k ∗ ϕ) (x)

=

∫∞

−∞

k (x − τ )ϕ (τ )dτ

=

∫∞

−∞

k (x − τ )a0e
inτdτ

Using the commutative property of convolution, where (k ∗ ϕ) (x) = (ϕ ∗ k) (x) , we can write
the above as

д (x) = (ϕ ∗ k) (x)

=

∫∞

−∞

k (τ )a0e
in(x−τ )dτ

= a0

∫∞

−∞

k (τ ) einxe−inτdτ

= a0e
inx

∫∞

−∞

k (τ ) e−inτdτ

But
∫∞
−∞

k (τ ) e−inτdτ is the fourier transform of the function k (x), Call this fourier transform
z (k (τ )) = X (n). Hence

д (x) = (ϕ ∗ k) (x)

= a0X (n) eiωx

= λeiωx

Where I called a0X (n) as the parameter λ since a0X (n) does not depend on x but depends on n,
I.e. given the function k (τ ), we can determine its Fourier transform for the specific n provided,
and this Fourier transform integral, which will evaluate to some value, is multiplied with a0
to obtain the scaling factor by which we scale einx which is ϕ (x) with. Hence we showed that
ϕ (x) is an eigenfunction of д (x) .

Now for the second part. If f (x) can be written as linear combination of complex exponential



8

functions as in f (x) =
N∑
n=1

ane
inx , then we write

д (x) = (k ∗ f ) (x)

=

∫∞

−∞

k (x − τ ) f (τ )dτ

=

∫∞

−∞

k (τ ) f (x − τ )dτ

=

∫∞

−∞

k (τ )

(
N∑
n=1

ane
in(x−τ )

)
dτ

=

∫∞

−∞

k (τ )

(
N∑
n=1

ane
inxe−inτ

)
dτ

=

∫∞

−∞

(
N∑
n=1

k (τ )ane
inxe−inτ

)
dτ

=
N∑
n=1

∫∞

−∞

k (τ )ane
inxe−inτdτ

=
N∑
n=1

ane
inx

∫∞

−∞

k (τ ) e−inτdτ

But
∫∞
−∞

k (τ ) e−inτdτ is the Fourier transform of k (τ ), call it X (n) , hence the above becomes

д (x) =
N∑
n=1

ane
inxX (n)

Hence we have replaced the integration operation with a summation operation and we have
simplified this equation.

3 Problem 3

The transpose of a matrix can be defined as the matrix AT such that 〈Ax,y〉 =
〈
x,ATy

〉
This definition generalizes to function operators like the fourier transform д (ξ ) = z { f } =∫∞
−∞

f (x) e−i2πξxdx

Find the adjoint zT {д} using the definition above.

Answer:

First, a geometric view of a matrix transpose can be illustrated in this diagram
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A

x

y

B

v  By

b  Ax

IF b,y  x,v THEN

B  AT

END IF

Find the image of the vector x under A, say b.

Now select some vector y in the column space of A. Find the dot product of b and y, call the result k.

Now find the image of y under B, say v. Find the dot product of v and x. If this dot product equals k, 

then this means that the matrix B is the transpose of A.

Now let us try to apply the above diagram to find the adjoint operator we need. Instead of
using the Matrix notation of A and AT , we now use the notation of L and L∗ , where here L∗ is
the adjoint operator of L. Hence we seek to find an operator L∗ such that 〈Lf ,q〉 = 〈f , L∗q〉

We are given what L is, it is the fourier transform, it takes the function f (x) and generates
д (ξ ) according to this operation

д (ξ ) = z { f } =

∫∞

−∞

f (x) e−i2πξxdx

For the inner product operation on the space of complex functions over the infinite domain, I
will use the following definition

〈f ,д〉 =

∫∞

−∞

f д dx

Hence, applying 〈Lf ,q〉 = 〈f , L∗q〉

〈Lf ,q〉 = 〈f , L∗q〉

〈д (ξ ) ,q〉 = 〈f , L∗q〉

〈 д(ξ )︷                   ︸︸                   ︷∫∞

−∞

f (x) e−i2πξxdx , q

〉
= 〈f (x) , (L∗q)〉∫∞

−∞

(∫∞

−∞

f (x) e−i2πξxdx

)
q dξ =

∫∞

−∞

f (x) (L∗q)dx∫∞

−∞

(∫∞

−∞

f (x)ei2πξxdx

)
q dξ =

∫∞

−∞

f (x) (L∗q)dx
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Exchanging the order of integration gives∫∞

−∞

f (x)

(∫∞

−∞

q ei2πξxdξ

)
dx =

∫∞

−∞

f (x) (L∗q)dx

Hence we see that ∫∞

−∞

q ei2πξxdξ = L∗q

So, the adjoint operator is the inverse fourier transform.
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