

\\ HWIO, Math 307. CSUF. Spring 2007.

Nasser Abbasi

May **11,** 2007

Contents

Mut the forms of de s we look with

Now for the second part. We write

 n and \cup n is similar to A .

 $S^{-1}AS = I$ $S^{-1}A = S/$ *I*

So A must be I , hence only I is similar to I .

2 Section 5.6 problem 2

problem: Describe in words all the matrices that are similar to $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and find 2 of them answer:

Let A be the above matrix. The above matrix represents a reflection across the x-axis. Hence Reflection across the y axis will be similar to it. Any multiple of this reflection matrix will also be similar to *A.*

Since reflection across the y-axis is $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ then this *B* matrix is similar to *A* Then any multiple of *B* is also similar to *A*, such as $\begin{pmatrix} -10 & 0 \\ 0 & 10 \end{pmatrix}$ and $\begin{pmatrix} -20 & 0 \\ 0 & 20 \end{pmatrix}$

3 Section 5.6, problem 5

Problem: show (if B is invertible) then BA is similar to AB answer: we want to show that $M^{-1} (BA) M = AB$ Let $M^{-1} (BA) M = H$, i.e. let BA^H , and try to show that $H = AB$

$$
M^{-1} (BA) M = H
$$

\n
$$
(BA) M = MH
$$

\n
$$
BA = MHM^{-1}
$$

\n
$$
A = B^{-1}MHM^{-1}
$$

\n
$$
AB = B^{-1}MHM^{-1}B
$$

\n
$$
AB = (B^{-1}M) H (M^{-1}B)
$$

\n
$$
AB = (M^{-1}B)^{-1} H (M^{-1}B)
$$

Let $M^{-1}B = Z$, hence the above becomes

 $AB = Z^{-1}HZ$

Then $H^{\sim}AB$

But we started by stating that $H^T BA$, and since if $r_1^r r_2$ and $r_2^r r_3$ then $r_1^r r_3$ then we showed $BA^{\sim}AB$.

4 **Section 5.6 problem 18**

l

problem: find normal matrix $(N N^H = N^H N)$ that is not Hermitian, skew symmetric, unitary, or diagonal. Show that all permutation matrices are normal answer:

5 Section 6.1, problem 1

problem: quadratic $f = x^2 + 4xy + 2y^2$ has saddle point at origin, despite that its coefficients are positive. Write f as difference of 2 squares answer: Let $f = (ax + by)^2 - (cx + dy)^2$, hence

$$
f = (ax + by)^2 - (cx + dy)^2
$$

= $a^2x^2 + b^2y^2 + 2abxy - (c^2x^2 + d^2y^2 + 2cdxy)$
= $a^2x^2 + b^2y^2 + 2abxy - c^2x^2 - d^2y^2 - 2cdxy$
= $x^2(a^2 - c^2) + y^2(b^2 - d^2) + xy(2ab - 2cd)$

Hence, compare coefficients, we have $a^2 - c^2 = 1$, $b^2 - d^2 = 2$, $2ab - 2cd = 4$

so $ab - cd = 2$.

Let $c = 1$, then we have

 $a^2 = 2, b^2 - d^2 = 2, 2ab - 2d = 4$

3 equations in 3 unknown. Solve with computer for speed (running out of time!) I get one of the solutions as

$$
d = 0, a = -\sqrt{2}, b = -\sqrt{2}
$$

So $f = (ax + by)^2 - (cx + dy)^2 = \boxed{(-\sqrt{2}x + -\sqrt{2}y)^2 - (x)^2}$

6 Section 6.1, problem 8

problem: decide for or against PD for these matrices, write out corresponding $f = x^T A x$ Answer: I use $a > 0$, and $ac > b^2$ test where $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ $\begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} \rightarrow 1 > 0, 5 > 9$ no, $\boxed{\text{Not PD}} \rightarrow f = ax^2 = 2bxy + cy^2 \rightarrow f = x^2 + 6xy + 3y$ $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \to a > 0, 1 > 1,$ no, $\boxed{\text{Not PD}} \to f = ax^2 = 2bxy + cy^2 \to f = x^2 - 2xy + y$ $\binom{2}{3}, \frac{3}{5} \rightarrow a > 0, 10 > 9,$ yes, $\boxed{PD} \rightarrow f = ax^2 = 2bxy + cy^2 \rightarrow f = 2x^2 + 6xy + 5y$ $\begin{pmatrix} -1 & 2 \\ 2 & -8 \end{pmatrix} \rightarrow -1 > 0, no \overline{[Not PD]} \rightarrow f = ax^2 + 2bxy + cy^2 \rightarrow f = -x^2 + 4xy - 8y$

For (b) we have $f = x^2 - 2xy + y$, if $y = \frac{x^2}{2x-1}$ then $f = x^2 - 2x\frac{x^2}{2x-1} + \frac{x^2}{2x-1} = 0$, hence I plot this:

And along the lines shown is $f = 0$

7 Section 6.1, problem 3

problem: if A is 2x2 symmetric matrix, passes test that a>0, $ac > b^2$ solve equation det $(A - \lambda I)$ = 0 and show that eigenvalues are ${>}0$

answer:

Matrix is PD, then

$$
\det \left(\begin{pmatrix} a & b \\ b & c \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) = 0
$$

$$
\begin{vmatrix} a - \lambda & b \\ b & c - \lambda \end{vmatrix} = 0
$$

$$
(a - \lambda) (c - \lambda) - b^2 = 0
$$

$$
ac - a\lambda - c\lambda + \lambda^2 = 0
$$

$$
\lambda^2 + \lambda (-a - c) + ac = 0
$$

Hence $\lambda_1 = a, \lambda_2 = c$

But $a > 0$, so $\lambda_1 > 0$, and given $ac >$ positive quantity b^2 , then $\lambda_2 = c \rightarrow \lambda_2 > 0$

8 Section 6.1 problem 5

(a) For which numbers *b* is $\begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix}$ PD? $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is PD is $a > 0$ and $ac > b^2$ for PD need $ac > b^2$, hence need $9 > b^2$ ie. $b < 3$ and $b > -3$, so $\boxed{-3 < b < 3}$ (b)Factor $A = LDL^T$ when *b* is in the range above $\begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix} \rightarrow l_{21} = b \rightarrow U = \begin{pmatrix} 1 & b \\ 0 & 9-b^2 \end{pmatrix}$ So $L = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 0 \\ 0 & 9-b^2 \end{pmatrix}$, $L^T = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ (c) What is the minimum of $f(x, y) = \frac{1}{2}(x^2 + 2bxy + 9y^2) - y$ when in this range when $f (x, y) = \frac{1}{2} (x^2 + 2bxy + 9y^2) - y = \frac{1}{2}x^2 + bxy + \frac{9}{2}y^2 - y$ $\frac{\partial f}{\partial x} = x + by = 0, \frac{\partial f}{\partial y} = bx + 9y - 1 = 0$ Hence $\begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & b \\ 0 & 9-b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Hence $y = \frac{1}{9-b^2}$, and $x + by = 0 \rightarrow x = -\frac{b}{9-b^2}$ So $f(x, y) = \frac{1}{2}(x^2 + 2bxy + 9y^2) - y$ Hence $f(x, y) \rightarrow \frac{1}{2} \left(\left(-\frac{b}{9-b^2} \right)^2 + 2b \left(-\frac{b}{9-b^2} \right) \left(\frac{1}{9-b^2} \right) + 9 \left(\frac{1}{9-b^2} \right)^2 \right) - \left(\frac{1}{9-b^2} \right) = \frac{1}{2(b^2-9)}$ So minimum is $\frac{1}{2(b^2-9)}$

(d)When $b = 3$, we see that we get $\frac{1}{0} = \infty$ so no minimum

9 Section 6.1 problem 17

Problem: If *A* has independent columns then A^TA is square and symmetric and invertible. Rewrite $\vec{x}^T A^T A \vec{x}$ to show why it is positive except when $\vec{x} = 0$, then $A^T A$ is PD

answer: $\vec{x}^T (A^T A) \vec{x} = (A\vec{x})^T A \vec{x}$
Let $A\vec{x} = \vec{b}$, then the above is $\vec{b}^T \vec{b} = ||\vec{b}||^2$, which is positive quantity except when $\vec{b} = \vec{0}$, which occurs when $A\vec{x} = b = 0$ which happens only when $\vec{x} = 0$, since *A* is <u>invertible</u>.

10 Section 6.2, problem 7

problem: If $A = Q\Lambda Q^T$ is P.D. then $R = Q\sqrt{\Lambda}Q^T$ is its S.P.D. square root. Why does R have positive eigenvalues? Compute *R* and verify $R^2 = A$ for $A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$, $A = \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix}$ answer:

For $A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$

Given *R* is P.D. (problem said so), Hence $\vec{x}^T R \vec{x} > 0$ for all $\vec{x} \neq 0$ Now (assuming in all that follows that $x \neq 0$)

$$
R\vec{x} = \lambda \vec{x}
$$

$$
\vec{x}^T R \vec{x} = x^T \lambda \vec{x}
$$

$$
\vec{x}^T R \vec{x} = \lambda ||\vec{x}||^2
$$

Since $\vec{x}^T R \vec{x} > 0$ then $\lambda ||\vec{x}||^2 > 0$, and since $||\vec{x}||^2 > 0$ hence $\lambda > 0$ To compute *R* we first need to find *Q.*

$$
A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} \rightarrow l_{21} = \frac{6}{10} \rightarrow \begin{pmatrix} 10 & 6 \\ 6 - \frac{6}{10} \times 10 & 10 - \frac{6}{10} \times 6 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & 6 \\ 0 & \frac{32}{5} \end{pmatrix}
$$

Hence $L = \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix}$, $U = \begin{pmatrix} 10 & 6 \\ 0 & \frac{32}{5} \end{pmatrix}$
Then

1 uen

$$
LDU = \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & \frac{6}{10} \\ 0 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix}^T
$$

Hence we see that $Q = L = \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix}$, $\Lambda = D = \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}$, $Q^T = L^T$

Since *A* is SPD, then $A = R^T R$ and $A = Q \Lambda Q^T$, hence we can take $R = \sqrt{\Lambda} Q^T$

$$
R = \sqrt{\Lambda}Q^{T} = \sqrt{\begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}} \begin{pmatrix} 1 & \frac{6}{10} \\ 0 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} \sqrt{10} & 0 \\ 0 & \sqrt{\frac{32}{5}} \end{pmatrix} \begin{pmatrix} 1 & \frac{6}{10} \\ 0 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} \sqrt{10} & \frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix}
$$

Verify that $R^T R = A$

$$
R^{T}R = \begin{pmatrix} \sqrt{10} & 0\\ \frac{3}{5}\sqrt{2}\sqrt{5} & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \begin{pmatrix} \sqrt{10} & \frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix}
$$

$$
= \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}
$$

verified oK.

Now do the same for $A = \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix}$ $A = \begin{pmatrix} -6 & 10 \end{pmatrix} \rightarrow l_{21} = \frac{30}{10} \rightarrow U = \begin{pmatrix} -6 - \frac{-6}{10} \times 10 & 10 - \frac{-6}{10} \times -6 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & \frac{32}{5} \end{pmatrix}$ Hence $L = \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}$, $U = \begin{pmatrix} 10 & -6 \\ 0 & \frac{32}{5} \end{pmatrix}$ Then

$$
LDU = \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}^{T}
$$

Hence we see that $Q = L = \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}$, $\Lambda = D = \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}$, $Q^T = L^T$ Then now we find *R*

Since *A* is SPD, then $A = R^T R$ and $A = Q \Lambda Q^T$, hence we can take $R = \sqrt{\Lambda} Q^T$

$$
R = \sqrt{\Lambda}Q^{T} = \sqrt{\begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} \sqrt{10} & 0 \\ 0 & \sqrt{\frac{32}{5}} \end{pmatrix} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix}
$$

$$
= \begin{pmatrix} \sqrt{10} & -\frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix}
$$

Verify that $R^T R = A$

$$
R^{T}R = \begin{pmatrix} \sqrt{10} & 0\\ -\frac{3}{5}\sqrt{2}\sqrt{5} & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \begin{pmatrix} \sqrt{10} & -\frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix}
$$

$$
= \begin{pmatrix} 10 & -6\\ -6 & 10 \end{pmatrix}
$$

verified oK.

11 Section 6.2, problem 4

Show from the eigenvalues that if A is P.D. so is A^2 and so is A^{-1} answer:

Given *A* is PD. Hence Eigenvalues of *A* are positive.

Let eigenvalue of A be λ_A Let $B = A^2$ Let eigenvalue of B be λ_B We need to show that $\lambda_B > 0$ Now

> $Bx = \lambda_B x$ $A^2x = \lambda_Bx$ $A Ax = \lambda_B x$ $A\lambda_A x = \lambda_B x$ $\lambda_A Ax = \lambda_B x$ $\lambda_A \lambda_A x = \lambda_B x$

From the last statement above we can now say

$$
\lambda_A^2 = \lambda_B \qquad \mathsf{V}
$$

Hence $\lambda_B > 0$, hence by theorem 6B which says that if all eigenvalues are positive then the matrix is PD, then in this case the matrix *B* which is *A2* is PD. QED Now for A^{-1}

$$
Ax = \lambda_A x
$$

pre multiply both sides by A^{-1}

$$
A^{-1}Ax = A^{-1}\lambda_A x
$$

\n
$$
x = A^{-1}\lambda_A x
$$

\n
$$
\frac{1}{\lambda_A}x = A^{-1}x
$$

\n
$$
A^{-1}x = \frac{1}{\lambda_A}x
$$

l.e.

Hence eigenvalue of A^{-1} is $\frac{1}{\lambda_A}$. And since $\lambda_A > 0$, then so is $\frac{1}{\lambda_A}$, and by theorem 6B again, since all eigenvalues are positive then A^{-1} is P.D.

From the pivots, eigenvalues, eigenvectors of $A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$, write A as $R^T R$ in 3 ways

1.
$$
(L\sqrt{D})(\sqrt{D}L^{T})
$$

\n2. $(Q\sqrt{\Lambda})(\sqrt{\Lambda}Q^{T})$
\n3. $(Q\sqrt{\Lambda}Q^{T})(Q\sqrt{\Lambda}Q^{T})$

Answer:

First find if A is PD or not. Since this is a 2 by 2 matrix, a simple test is to look at the quantity $a^2 - bc$ and if it is positive, and if *a* is also positive, then the matrix is PD

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$

$$
a = 5 > 0
$$

$$
a^2 - bc = 25 - 16
$$

$$
= 9 > 0
$$

hence *A* is P.D.

Then it can be written as $R^{T}R$ where *R* is full rank square matrix.

1) Since A is symmetric P.D., then it has choleskly decomposition CC^T where $C = L\sqrt{D}$, and $C^T = \sqrt{D}L^T$ (the pivots are positive in the D matrix diagonal, so we can take their square root)

Then we write
$$
A = R^T R = (L\sqrt{D})(\sqrt{D}L^T)
$$
 where $R = (\sqrt{D}L^T)$
\n $\begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \rightarrow l_{21} = \frac{4}{5} \rightarrow U = \begin{pmatrix} 5 & 4 \\ 0 & 5 - \frac{4}{5} \times 4 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 0 & \frac{9}{5} \end{pmatrix}$
\nHence $L = \begin{pmatrix} 1 & 0 \\ \frac{4}{5} & 1 \end{pmatrix}$, $U = \begin{pmatrix} 5 & 4 \\ 0 & \frac{9}{5} \end{pmatrix} \rightarrow LDU = \begin{pmatrix} 1 & 0 \\ \frac{4}{5} & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & \frac{9}{5} \end{pmatrix} \begin{pmatrix} 1 & \frac{4}{5} \\ 0 & 1 \end{pmatrix}$
\nHence $R = \sqrt{\begin{pmatrix} 5 & 0 \\ 0 & \frac{9}{5} \end{pmatrix}} \begin{pmatrix} 1 & \frac{4}{5} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{\frac{9}{5}} \end{pmatrix} \begin{pmatrix} 1 & \frac{4}{5} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \sqrt{5} & \frac{4}{5}\sqrt{5} \\ 0 & \frac{3}{5}\sqrt{5} \end{pmatrix}$
\nHence

$$
A = \overbrace{\left(\frac{\sqrt{5}}{\frac{4}{5}\sqrt{5}} \frac{0}{\frac{3}{5}\sqrt{5}}\right)}^{L\sqrt{D}} \overbrace{\left(\frac{\sqrt{5}}{0} \frac{\frac{4}{5}\sqrt{5}}{\frac{3}{5}\sqrt{5}}\right)}^{L\sqrt{D}L^{T}}
$$

2)From $A = Q\Lambda Q^T$ where Q is the matrix which contains as its columns the normalized eigenvectors of *A* and A contains in its diagonal the eigenvalues of *A.* First start by finding eigenvalues and eigenvectors of *A*

13 Section 6.2 problem 8

problem: if *A* is SPD and C is nonsignular, prove that $B = C^{T}AC$ is also SPD solution: Since *A* is SPD, then it has positive eigenvalues.

Since *B* is similar to *A* (given), then *B* has the same eigenvalues as *A,* Hence *B* also has all its eigenvalues positive.

Hence by theorem 6B, *B* is symmetric positive definite.