

\mathbb{N} HW10, Math 307. CSUF. Spring 2007.

Nasser Abbasi

May 11, 2007

Contents

		10 ch cure 100	Lution
С	ontents	Not troblems ion and for thes	in.
1	Section 5.6, problem 1	V a v	2
2	Section 5.6 problem 2		3
3	Section 5.6, problem 5		4
4	Section 5.6 problem 18		5
5	Section 6.1, problem 1		6
6	Section 6.1, problem 8		7
7	Section 6.1, problem 3		8
8	Section 6.1 problem 5		9
9	Section 6.1 problem 17		10
10	Section 6.2, problem 7		11
11	Section 6.2, problem 4		13
12	Section 6.2, problem 6		14
13	Section 6.2 problem 8		16

Now for the second part. We write

mence o is similar to A.

 $S^{-1}AS = I$ $S^{-1}A = S/$

1

So A must be I, hence only I is similar to I.

2 Section 5.6 problem 2

problem: Describe in words all the matrices that are similar to $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and find 2 of them answer:

Let A be the above matrix. The above matrix represents a reflection across the x-axis. Hence Reflection across the y axis will be similar to it. Any multiple of this reflection matrix will also be similar to A.

Since reflection across the y-axis is $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ then this *B* matrix is similar to *A*. Then any multiple of *B* is also similar to *A*, such as $\begin{pmatrix} -10 & 0 \\ 0 & 10 \end{pmatrix}$ and $\begin{pmatrix} -20 & 0 \\ 0 & 20 \end{pmatrix}$

3 Section 5.6, problem 5

Problem: show (if B is invertible) then BA is similar to ABanswer: we want to show that $M^{-1}(BA) M = AB$ Let $M^{-1}(BA) M = H$, i.e. let $BA^{\tilde{-}}H$, and try to show that H = AB

$$M^{-1} (BA) M = H$$

$$(BA) M = MH$$

$$BA = MHM^{-1}$$

$$A = B^{-1}MHM^{-1}$$

$$AB = B^{-1}MHM^{-1}B$$

$$AB = (B^{-1}M) H (M^{-1}B)$$

$$AB = (M^{-1}B)^{-1} H (M^{-1}B)$$

Let $M^{-1}B = Z$, hence the above becomes

 $AB = Z^{-1}HZ$

Then $H^{\sim}AB$

But we started by stating that $H^{\tilde{}}BA$, and since if $r_1 \tilde{}r_2$ and $r_2 \tilde{}r_3$ then $r_1 \tilde{}r_3$ then we showed $BA^{\tilde{}}AB$.

4 Section 5.6 problem 18

l

problem: find normal matrix $(NN^H = N^H N)$ that is not Hermitian, skew symmetric, unitary, or diagonal. Show that all permutation matrices are normal answer:

5 Section 6.1, problem 1

problem: quadratic $f = x^2 + 4xy + 2y^2$ has saddle point at origin, despite that its coefficients are positive. Write f as difference of 2 squares answer: Let $f = (ax + by)^2 - (cx + dy)^2$, hence

$$f = (ax + by)^{2} - (cx + dy)^{2}$$

= $a^{2}x^{2} + b^{2}y^{2} + 2abxy - (c^{2}x^{2} + d^{2}y^{2} + 2cdxy)$
= $a^{2}x^{2} + b^{2}y^{2} + 2abxy - c^{2}x^{2} - d^{2}y^{2} - 2cdxy$
= $x^{2} (a^{2} - c^{2}) + y^{2} (b^{2} - d^{2}) + xy (2ab - 2cd)$

Hence, compare coefficients, we have $a^2 - c^2 = 1, b^2 - d^2 = 2, 2ab - 2cd = 4$

so ab - cd = 2.

Let c = 1, then we have

 $a^2 = 2, b^2 - d^2 = 2, 2ab - 2d = 4$

3 equations in 3 unknown. Solve with computer for speed (running out of time!) I get one of the solutions as

$$d = 0, a = -\sqrt{2}, b = -\sqrt{2}$$

So $f = (ax + by)^2 - (cx + dy)^2 = \boxed{\left(-\sqrt{2}x + -\sqrt{2}y\right)^2 - (x)^2}$

6 Section 6.1, problem 8

problem: decide for or against PD for these matrices, write out corresponding $f = x^T A x$ Answer: I use a > 0, and $ac > b^2$ test where $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ $\begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} \rightarrow 1 > 0, 5 > 9$ no, $\boxed{\text{Not PD}} \rightarrow f = ax^2 = 2bxy + cy^2 \rightarrow \boxed{f = x^2 + 6xy + 3y}$ $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \rightarrow a > 0, 1 > 1, \text{no}, \boxed{\text{Not PD}} \rightarrow f = ax^2 = 2bxy + cy^2 \rightarrow \boxed{f = x^2 - 2xy + y}$ $\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \rightarrow a > 0, 10 > 9, \text{yes}, \boxed{\text{PD}} \rightarrow f = ax^2 = 2bxy + cy^2 \rightarrow \boxed{f = 2x^2 + 6xy + 5y}$ $\begin{pmatrix} -1 & 2 \\ 2 & -8 \end{pmatrix} \rightarrow -1 > 0, no \boxed{\text{Not PD}} \rightarrow f = ax^2 + 2bxy + cy^2 \rightarrow \boxed{f = -x^2 + 4xy - 8y}$

For (b) we have $f = x^2 - 2xy + y$, if $y = \frac{x^2}{2x-1}$ then $f = x^2 - 2x\frac{x^2}{2x-1} + \frac{x^2}{2x-1} = 0$, hence I plot this:

And along the lines shown is f = 0

7 Section 6.1, problem 3

problem: if A is 2x2 symmetric matrix, passes test that a>0, $ac > b^2$ solve equation det $(A - \lambda I) = 0$ and show that eigenvalues are >0

answer:

Matrix is PD, then

$$det \left(\begin{pmatrix} a & b \\ b & c \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) = 0$$
$$\left| \begin{pmatrix} a - \lambda & b \\ b & c - \lambda \end{pmatrix} \right| = 0$$
$$(a - \lambda) (c - \lambda) - b^2 = 0$$
$$ac - a\lambda - c\lambda + \lambda^2 = 0$$
$$\lambda^2 + \lambda (-a - c) + ac = 0$$

Hence $\lambda_1 = a, \lambda_2 = c$

But a > 0, so $\lambda_1 > 0$, and given $ac > \text{positive quantity } b^2$, then $\lambda_2 = c \rightarrow \lambda_2 > 0$

8 Section 6.1 problem 5

(a) For which numbers b is $\begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix}$ PD? $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is PD is a > 0 and $ac > b^2$ for PD need $ac > b^2$, hence need $9 > b^2$ ie. b < 3 and b > -3, so $\boxed{-3 < b < 3}$ (b)Factor $A = LDL^T$ when b is in the range above $\begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix} \rightarrow l_{21} = b \rightarrow U = \begin{pmatrix} 1 & b \\ 0 & 9 - b^2 \end{pmatrix}$ So $L = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 0 \\ 0 & 9 - b^2 \end{pmatrix}$, $L^T = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ (c) What is the minimum of $f(x, y) = \frac{1}{2}(x^2 + 2bxy + 9y^2) - y$ when in this range when $f(x, y) = \frac{1}{2}(x^2 + 2bxy + 9y^2) - y = \frac{1}{2}x^2 + bxy + \frac{9}{2}y^2 - y$ $\frac{\partial f}{\partial x} = x + by = 0$, $\frac{\partial f}{\partial y} = bx + 9y - 1 = 0$ Hence $\begin{pmatrix} 1 & b \\ b & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & b \\ 0 & 9 - b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Hence $\underbrace{y = \frac{1}{9 - b^2}}_{3}$, and $x + by = 0 \rightarrow \underbrace{x = -\frac{b}{9 - b^2}}_{9 - b^2}$ So $f(x, y) = \frac{1}{2}(x^2 + 2bxy + 9y^2) - y$ Hence $f(x, y) \rightarrow \frac{1}{2}\left((-\frac{b}{9 - b^2})^2 + 2b\left(-\frac{b}{9 - b^2}\right)\left(\frac{1}{9 - b^2}\right) + 9\left(\frac{1}{9 - b^2}\right)^2\right) - \left(\frac{1}{9 - b^2}\right) = \frac{1}{2(b^2 - 9)}$

(d)When b = 3, we see that we get $\frac{1}{0} = \infty$ so no minimum

9 Section 6.1 problem 17

Problem: If A has independent columns then $A^T A$ is square and symmetric and invertible. Rewrite $\vec{x}^T A^T A \vec{x}$ to show why it is positive except when $\vec{x} = 0$, then $A^T A$ is PD answer: $\vec{x}^T (A^T A) \vec{x} = (A \vec{x})^T A \vec{x}$

Let $A\vec{x} = \vec{b}$, then the above is $\vec{b}^T\vec{b} = \|\vec{b}\|^2$, which is positive quantity except when $\vec{b} = \vec{0}$, which occurs when $A\vec{x} = \vec{b} = \vec{0}$ which happens only when $\vec{x} = \vec{0}$, since A is invertible.

Hence $A^T A$ is positive definite except when $\vec{x} = 0$

Section 6.2, problem 7 10

problem: If $A = Q\Lambda Q^T$ is P.D. then $R = Q\sqrt{\Lambda}Q^T$ is its S.P.D. square root. Why does R have positive eigenvalues? Compute R and verify $R^2 = A$ for $A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}, A = \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix}$ answer:

For $A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$

Given R is P.D. (problem said so), Hence $\vec{x}^T R \vec{x} > 0$ for all $\vec{x} \neq 0$ Now (assuming in all that follows that $x \neq 0$)

$$R\vec{x} = \lambda \vec{x}$$
$$\vec{x}^T R\vec{x} = x^T \lambda \vec{x}$$
$$\vec{x}^T R\vec{x} = \lambda \|\vec{x}\|^2$$

Since $\vec{x}^T R \vec{x} > 0$ then $\lambda \|\vec{x}\|^2 > 0$, and since $\|\vec{x}\|^2 > 0$ hence $\lambda > 0$ To compute R we first need to find Q.

$$A = \begin{pmatrix} 10 & 6\\ 6 & 10 \end{pmatrix} \to l_{21} = \frac{6}{10} \to \begin{pmatrix} 10 & 6\\ 6 - \frac{6}{10} \times 10 & 10 - \frac{6}{10} \times 6 \end{pmatrix} \to \begin{pmatrix} 10 & 6\\ 0 & \frac{32}{5} \end{pmatrix}$$

Hence $L = \begin{pmatrix} 1 & 0\\ \frac{6}{10} & 1 \end{pmatrix}, U = \begin{pmatrix} 10 & 6\\ 0 & \frac{32}{5} \end{pmatrix}$
Then

1 nen

$$LDU = \begin{pmatrix} 1 & 0\\ \frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0\\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & \frac{6}{10}\\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0\\ \frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0\\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & 0\\ \frac{6}{10} & 1 \end{pmatrix}^{T}$$

Hence we see that $Q = L = \begin{pmatrix} 1 & 0 \\ \frac{6}{10} & 1 \end{pmatrix}, \Lambda = D = \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}, Q^T = L^T$

Since A is SPD, then $A = R^T R$ and $A = Q \Lambda Q^T$, hence we can take $R = \sqrt{\Lambda} Q^T$

$$R = \sqrt{\Lambda}Q^{T} = \sqrt{\begin{pmatrix} 10 & 0\\ 0 & \frac{32}{5} \end{pmatrix}} \begin{pmatrix} 1 & \frac{6}{10}\\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \sqrt{10} & 0\\ 0 & \sqrt{\frac{32}{5}} \end{pmatrix} \begin{pmatrix} 1 & \frac{6}{10}\\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \sqrt{10} & \frac{3}{5}\sqrt{2}\sqrt{5}\\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix}$$

Verify that $R^T R = A$

$$R^{T}R = \begin{pmatrix} \sqrt{10} & 0\\ \frac{3}{5}\sqrt{2}\sqrt{5} & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \begin{pmatrix} \sqrt{10} & \frac{3}{5}\sqrt{2}\sqrt{5}\\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \\ = \begin{pmatrix} 10 & 6\\ 6 & 10 \end{pmatrix}$$

verified oK.

Now do the same for $A = \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix}$ $A = \begin{pmatrix} 10 & -6 \\ -6 & 10 \end{pmatrix} \rightarrow l_{21} = \frac{-6}{10} \rightarrow U = \begin{pmatrix} 10 & -6 \\ -6 - \frac{-6}{10} \times 10 & 10 - \frac{-6}{10} \times -6 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & -6 \\ 0 & \frac{32}{5} \end{pmatrix}$: Hence $L = \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}, U = \begin{pmatrix} 10 & -6 \\ 0 & \frac{32}{5} \end{pmatrix}$ Then

$$LDU = \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}^{T}$$

Hence we see that $Q = L = \begin{pmatrix} 1 & 0 \\ -\frac{6}{10} & 1 \end{pmatrix}$, $\Lambda = D = \begin{pmatrix} 10 & 0 \\ 0 & \frac{32}{5} \end{pmatrix}$, $Q^T = L^T$ Then now we find R

Since A is SPD, then $A = R^T R$ and $A = Q \Lambda Q^T$, hence we can take $R = \sqrt{\Lambda} Q^T$

$$R = \sqrt{\Lambda}Q^{T} = \sqrt{\begin{pmatrix} 10 & 0\\ 0 & \frac{32}{5} \end{pmatrix}} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \sqrt{10} & 0 \\ 0 & \sqrt{\frac{32}{5}} \end{pmatrix} \begin{pmatrix} 1 & -\frac{6}{10} \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \sqrt{10} & -\frac{3}{5}\sqrt{2}\sqrt{5} \\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix}$$

Verify that $R^T R = A$

$$R^{T}R = \begin{pmatrix} \sqrt{10} & 0\\ -\frac{3}{5}\sqrt{2}\sqrt{5} & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \begin{pmatrix} \sqrt{10} & -\frac{3}{5}\sqrt{2}\sqrt{5}\\ 0 & \frac{4}{5}\sqrt{2}\sqrt{5} \end{pmatrix} \\ = \begin{pmatrix} 10 & -6\\ -6 & 10 \end{pmatrix}$$

verified oK.

11 Section 6.2, problem 4

Show from the eigenvalues that if A is P.D. so is A^2 and so is A^{-1} answer:

Given A is PD. Hence Eigenvalues of A are positive.

Let eigenvalue of A be λ_A Let $B = A^2$ Let eigenvalue of B be λ_B We need to show that $\lambda_B > 0$ Now

 $Bx = \lambda_B x$ $A^2 x = \lambda_B x$ $AAx = \lambda_B x$ $A\lambda_A x = \lambda_B x$ $\lambda_A Ax = \lambda_B x$ $\lambda_A Ax = \lambda_B x$ $\lambda_A \lambda_A x = \lambda_B x$

From the last statement above we can now say

$$\lambda_A^2 = \lambda_B \qquad \forall$$

Hence $\lambda_B > 0$, hence by theorem 6B which says that if all eigenvalues are positive then the matrix is PD, then in this case the matrix B which is A^2 is PD. QED Now for A^{-1}

$$Ax = \lambda_A x$$

pre multiply both sides by A^{-1}

$$\widetilde{A^{-1}Ax} = A^{-1}\lambda_A x$$

$$x = A^{-1}\lambda_A x$$

$$\frac{1}{\lambda_A}x = A^{-1}x$$

$$A^{-1}x = \frac{1}{\lambda_A}x$$

i.e.

Hence eigenvalue of A^{-1} is $\frac{1}{\lambda_A}$. And since $\lambda_A > 0$, then so is $\frac{1}{\lambda_A}$, and by theorem 6B again, since all eigenvalues are positive then A^{-1} is P.D.

From the pivots, eigenvalues, eigenvectors of $A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$, write A as $R^T R$ in 3 ways

1.
$$\left(L\sqrt{D}\right)\left(\sqrt{D}L^{T}\right)$$

2. $\left(Q\sqrt{\Lambda}\right)\left(\sqrt{\Lambda}Q^{T}\right)$
3. $\left(Q\sqrt{\Lambda}Q^{T}\right)\left(Q\sqrt{\Lambda}Q^{T}\right)$

Answer:

First find if A is PD or not. Since this is a 2 by 2 matrix, a simple test is to look at the quantity $a^2 - bc$ and if it is positive, and if a is also positive, then the matrix is PD

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$a = 5 > 0$$
$$a^{2} - bc = 25 - 16$$
$$= 9 > 0$$

hence A is P.D.

Then it can be written as $R^T R$ where R is full rank square matrix.

1) Since A is symmetric P.D., then it has choleskly decomposition CC^T where $C = L\sqrt{D}$, and $C^T = \sqrt{D}L^T$ (the pivots are positive in the D matrix diagonal, so we can take their square root)

Then we write
$$A = R^T R = \left(L\sqrt{D}\right) \left(\sqrt{D}L^T\right)$$
 where $R = \left(\sqrt{D}L^T\right)$
 $\begin{pmatrix} 5 & 4\\ 4 & 5 \end{pmatrix} \rightarrow l_{21} = \frac{4}{5} \rightarrow U = \begin{pmatrix} 5 & 4\\ 0 & 5 - \frac{4}{5} \times 4 \end{pmatrix} = \begin{pmatrix} 5 & 4\\ 0 & \frac{9}{5} \end{pmatrix}$
Hence $L = \begin{pmatrix} 1 & 0\\ \frac{4}{5} & 1 \end{pmatrix}, U = \begin{pmatrix} 5 & 4\\ 0 & \frac{9}{5} \end{pmatrix} \rightarrow LDU = \begin{pmatrix} 1 & 0\\ \frac{4}{5} & 1 \end{pmatrix} \begin{pmatrix} 5 & 0\\ 0 & \frac{9}{5} \end{pmatrix} \begin{pmatrix} 1 & \frac{4}{5}\\ 0 & 1 \end{pmatrix}$
Hence $R = \sqrt{\begin{pmatrix} 5 & 0\\ 0 & \frac{9}{5} \end{pmatrix}} \begin{pmatrix} 1 & \frac{4}{5}\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \sqrt{5} & 0\\ 0 & \sqrt{\frac{9}{5}} \end{pmatrix} \begin{pmatrix} 1 & \frac{4}{5}\\ 0 & \frac{3}{5}\sqrt{5} \end{pmatrix}$
Hence

$$A = \underbrace{\begin{pmatrix} L\sqrt{D} & \sqrt{D}L^T \\ \sqrt{5} & 0 \\ \frac{4}{5}\sqrt{5} & \frac{3}{5}\sqrt{5} \end{pmatrix} \begin{pmatrix} \sqrt{5} & \frac{4}{5}\sqrt{5} \\ 0 & \frac{3}{5}\sqrt{5} \end{pmatrix}}_{A = \frac{1}{5}\sqrt{5}}$$

2) From $A = Q\Lambda Q^T$ where Q is the matrix which contains as its columns the normalized eigenvectors of A and Λ contains in its diagonal the eigenvalues of A. First start by finding eigenvalues and eigenvectors of A

13 Section 6.2 problem 8

problem: if A is SPD and C is nonsignular, prove that $B = C^T A C$ is also SPD solution: Since A is SPD, then it has positive eigenvalues.

Since B is similar to A (given), then B has the same eigenvalues as A, Hence B also has all its eigenvalues positive.

Hence by theorem 6B, B is symmetric positive definite.