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Chapter 1

Introduction

1.1 syllabus

Fall 2008
EGEE 443 Electronic Communications (3)
COURSE DESCRIPTION: :
s “ yhs -
e\echﬂ’v\ i > P vab -a :‘ 5'}:{‘(

Prerequisites: EGEE 310 and EGEE 323.

systems, the effect of noise on system performance.

Roden, Prentice Hall, 1996

Get Class poteo from ook ster=

CALIFORNIA STATE UNIVERSITY, FULLERTON
DEPARTMENT OF ELECTRICAL ENGINEERING

Principles of amplitude, angular and pulse modulation, representative communication

Pdbic
“tpwi — 5 pm

INSTRUCTOR: K. HAMIDIAN
OFFICE: E-217

TELEPHONE:  ~7le/—278-2884

FAX: )4~ 278-7162 [E-AF] 4ere

OFFICE HOURS: MW: 1700~ 17:30 and 2015-2045
TTH: 1700 —-17:30 and 2015-2045

PREREQUISITE TOPICS: Probability, Fourier Transforms, Linear Systems

TEXTBOOK: Intrduction to Analog & Digital Communications.
S. Haykin and M.Moher, Wiley, 2007,
2™ Edition

REFERENCES: 1) Introduction to Communication Systems, F.

Stremler, Addison Wesley, 1982, 2™ edition

2) Digital and Analog Communication Systems, L.
Couch, Prentice Hall, 2001, 6™ edition.

3) Analog and Digital Communication Systems, M.




1.1. syllabus

CHAPTER 1. INTRODUCTION

WEEKS

5.5

6.0

1.5

COURSE OUTLINE
TOPICS

Chapter 1. Introduction, Classification of Signals. Handout

Chapter 2. Fourier Transform Review, Properties and JEPPL?J
Applications, Power and Energy Spectral Density. Band- ?:,ZL o
pass Signals and Systems. Hilbert Transforms, Pre- S Commmunada

Envelope, Quadrature Representation of Narrow Band
Signals. Transmission of Signals Through Linear Systems.

Chapter 8. Random Processes Stationary Processes.
Ergodic Processes. Transmission of a Random Process
Through a Linear-Time-Invariant Filter. Power Spectral
Density. Gaussian Process Noise, Quadrature
Representation of Narrowband Noise. Sine Wave Plus

Narrowband Noise. P e envedp
2D st A T
MIDTERM 1 (75 MINUTES) N A Toon b

Chapters 2 and 9. Amplitude Modulation
Introduction, Amplitude Modulation (AM), Double
Sidebanb-Suppresed Carrier (DSBSC), Single Sideband
(SSB), Vestigial Sidband (VSB) Modulation. Noise in
Linear Receivers, Noise in AM Receivers. Frequency-
Division Multiplexing.

Chapters 4 and 9. Angle Modulation

Frequency Modulation (FM), Phase Modulation

(PM).Generation of FM wave. Demodulation of FM wave.

Noise in FM Receivers. )
Tost Vinords bh o

MIDTERM 2 (75 MINUTES) —

Chapter 5. Pulse Modulation: Transition from Analog to
Digital Communication.
Sampling Process. Pulse-Amplitude Modulation (PAM).
Quantization Process. Pulse-Code Modulation (PCM).
Time-Division Multiplexing, Digital Multiplexers. Delta
Modulation.
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1.0 Chapter 6. Baseband Tranmission
Intersymbol Interference, Nyquist’s Criterion for
Distortionless Transmission, Baseband M-ary PAM
Transmission, Optimum Linear Receiver.

1.0 Chapter 7. Passband Digital Transmission
Coherent Phase-Shift Keying, Coherent Frequency-Shift

Keying, Hybrid Amplitude/Phase Modulation, Detection of
Signals with Unknown Phase. Noncoherent Orthogonal
Modulation, Differential Phase-Shift Keying.

0.5 FINAL EXAM (110 MINUTES)

Grading Policy
(1) Grades will be assigned based on the class curve.

(2) A performance around the average class performance
will earn a B-; a performance superior to the class
mean will earn a B or B+ and a very superior
performance will gain an A- or A. A performance
inferior to the class mean will earn a C and a very
inferior performance aD or an F.

HOMEWORK (including computer work) 12%

MIDTERMS 53%

FINAL EXAM 35%
EXAMS CANNOT BE MISSED.

HOMEWORK WILL BE ASSIGNED EVERY THURSDAY AND WILL BE DUE THE
FOLLOWING THURSDAY.

HOMEWORK MUST BE TURNED IN ON TIME AND CLEAN FORMAT.
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COURSE LEARNING OBJECTIVES:

The course is devoted to the study of principles of communication theory as applied to
the transmission of information. The focus is on the basic issues, relating theory to
practice wherever possible. At the end of this introductory course in communication,
student should understand and be able to apply the following to calculate and solve
engineering problems in communication area:

1)
2)
3)
4)
5)

6)
7

8)

10.

11.

Classical method for frequency analysis: Fourier transform and Fourier Series.
Spectral density and correlation functions of energy signals and power signals.
Using various techniques to find the energy and the power of a given signal.
Transmission of signals through linear filters and channel.

Hilbert transform and its application. Concept of pre-envelope, complex envelope
and envelope and their applications.

Evaluating the response of a band-pass filter or channel to a band-pass signal.
Random processes. Transmission of a random process through a linear time invariant
system. Gaussian process. Quadrature representation of a narrow-band noise.

Mathematical descriptions and the spectral characteristics of: amplitude modulation,
frequency modulation and phase modulation. Frequency division multiplexing.
Demodulation of AM, FM and PM signals.

Effect of noise in communication systems. Noise in CW modulation system. Noise
in AM and FM receivers.

Sampling Theorem. Pulse-Amplitude Modulation (PAM). Pulse-Code Modulation
(PCM). Quantization Process. Time Division Multiplexing (TDM).

Baseband Data Transmission. Band-pass data transmission. Digital modulation
techniques such as PSK, FSK and ASK.

ASSESSENT OF STUDENTS’ LEARNING:

At the end of the semester, the effect of this course on students’ learning will be assessed
based on the following criteria:
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*The ability to apply knowledge of mathematics, science and engineering.

*The ability to design a system, component, or a process to meet desired needs.
*The ability to identify, formulate and solve engineering problems.

*A recognition of the need for, and an ability to engage in life-long learning.

*The ability to use the techniques, skills, and modern engineering tools necessary for
engineering practice.
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CHAPTER 1. INTRODUCTION

1.2 Text Book

SIMON HAYKIN | MICHAEL MOHER

Introduction to

¥
=

ANALOG & DIGITAL
COMMUNICATIONS

| Second Edition

Figure 1.1: Official text

book

CAIL ST

FULLERTON

EGEE 443
Hamidian

Electronic Circuits

Figure 1.2: Instructor own text which we used more
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1.3 Instructor contact information

Hamidian, Karim

Room: E-217

Phone: (714) 278-2584

Email: khamidian@fullerton.edu
Bio:N/A

Figure 1.3: Professor Hamidian, Karim

1.4 Class information

EGEE 443 - 01 Electronic Communication Systems

CsU Fullerton | Fall 2008 | Di

ssion

RETURN TO RESULTS

CLASS DETAILS

Status o Open Career  Undergraduate
class Number 12869 Dates /232008 - 12/12/2008
Session Regular Academic Session Grading Undergraduate Student
Units 3 units Spdn
Location Fullerton C
Instruction Mode I Perzon M - e
Campus  Fullerton Carpus
Class Components Dizcuzzion Required

Meeting Information

Days & Times Room Instructor Meeting Dates
TuTh 7:00PM - 2:15PM E 321 - Lecture Roorm  Karim Hamidian Eg?fg?gggs-
Notes

Class Notes

Enrollment restricted to those students who have met the prerequisite(s),
[See Catalog course description.)

DESCRIPTION

Prerequisites: EGEE 310 and 323 or equivalent. Principles of amplitude, angular and

pulse modulation, representative comrnunication systems, the effects of noise on systerm
perfarmance.,

Figure 1.4: Course meeting time
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2.1 Handout on random processes
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Table A11.1 Summary of Properties of the Fourier Transform

Property ' Mathematical Description
1. Linearity ' L ag() + bl = aG(f) + BGy(f)
where ¢ and b are constants
1 A\
2. Time scaling glet) = |al Gk“)
where ais a constant
3. Duality If glt) = G(f),
then G(t) =g(=f)
4. Time shifting g(t ~ to) = G(f)exp(—j2nft,)
5. Frequency shifting exp(j2mf ) g(t) = G(f — f)
6. Area under g(¢) r g(t)y dt = G(0)
7. Area under G(f) g0) = J“ G(f) df
8. Differentiation in the time domain E:g(t) = 527f G f)
9. Integration in the time domain j‘ (1) dT = —— G(f) + &0 , f
. T _mg . ‘_‘]277,]’ 9 a(f)
10. Conjugate functions If g(o) = G(f),
then gH () = G (—f)
. 11. Multiplication in the time domain a () g(t) = j@ GV G(f — &) dr
12. Convolution in the time domain f a(nglt — 1) dr = G(/HG(S y

Table A11.4 Trigonometric Identities

exp(£j6) = cosf £ jsing
cosh = L[exp(jO) + exp(—;O)]

i = %},[exp( 78) — exp(—j0)]

sin?0 + cos?f = 1

cos?f — sin?@ = cos(26)

cos28 = $[1 + cos(26)]

sin?6 = $[1 — cos(20)]

2 sin@ cosf = sin(26)

sin(a = B) = sina cosB * cosa sinB

cos(a + B) = cosa cosf F sina sinff —
tana * tanf

mala = ) = 1 ¥ tana tanB

sina sinB = ${cos(a — B) — cos(a + B

cosa cosB = }[cos(@ — B) + cos(a + Al —

sine cosB = 3[sin(e — B) + sin(a + 23]

19
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3.1 HW 1

Local contents
[3.1.1  Questions| . .
3.1.2 Problem 2.1].
L. Problem 2.2/ .
3.1.4 Problem 2.3 .
[3.1.5  Problem 2.4 .
[3.1.6  Key solution]

3.1.1 Questions

a2 S A [ odops R e

96 Representation Of Signals And Systems R
Probiem 1 [ > Q.l? we nay fbos k.

tab Find the Fourier translonm of the hall-cosine pulse shown in Fig. P24al

thi geply the time-shifting property 1o the result obtained in part fa} to evaluate the spectrum
of the hall-sine pulse shown in Fig. P2.4¢h)

fc1 What is the spectrum of a half-sine pulse having a duration equal to «T?

1dr What is the spectrum of the negative half-sine pulse shown in Fig. P2.4(c)?

fev Find the spectrum of the single sine pulse shown in Fig. P2.4(d).

Hinl o A = 4 o [[/’7715) /ﬂé’[?z(—:r")

el I
4
/k\ N
T 0 I ) T !
: z
(b} X
1a) ‘r
2l gln) !
- ;
; r , |
0 ! 0 T |
e {4 |
{
13} ) }

Figure P2.4

jach # 2 .32
Girée  GR) = exp(-L)Fm(2ft) ul) e
Y fpaner Tomugr o f gl FTIINT =T

o .
o
3 = . '
Problem. A Any function g(r) can be split unambiguously into an even part and an odd part.

e by F=egn+adn => j///= /2 /{) fjﬂ (7/)

The even part is defined by

(%(n: W+ at=n)
and the odd part is defined by )

'3 7 £

gtona- s e A
(it 72 J7 '
(1 Fualuate the even and odd parts of a rectangular pulse defined by y {

JEL Jz 7‘/
3‘“’& rect| :7 ,..—:-

b What are the Fourier transforms of these two parts of the pulse?

22
23
25
25
27
28

22
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X4
Problem Dietermine the inverse Fourier transform of the frequency function G( /) defined
hy the nm/p}iludv: and phase spectra shown in Fig. P

1 arg |G(f}]

i

)

!
w

-w 0 w -

~in

Figure P2.5

3.1.2 Problem 2.1

3.1.2.1 part(a)

Let F (g (t)) be the Fourier Transform of ¢ (¢), i.e. F (g (t)) = G (f). First we use the given
hint and note that ¢ (¢) can be written as follows

g (t) = Acos (?) rect (;)

Start by writing Zfas 27 fot, where fo = % Now using the property that multiplication
in time domain is the same as convolution in frequency domain, we obtain

G(f) = F (Acos (27 fot)) @ F (rect <;>) (1)

23




3.1. HW 1 CHAPTER 3. HWS

But
F (Acos (2nfot)) = A F (cos (27 fot))

_ A F <ej2ﬂfot _zej2ﬂf0t>

— f; [ (¥t g et

= “;1 | F(e0t) 4 (o772t )]

But £ (ej2“f°t> =6(f— fo) and F (e‘j%fot) = (f + fo)hence the above becomes

I (Acos(nf) = 5 [6(F — fo) + 57+ fo) )
Substitute (2) into (1) we obtain

G =516+ 80+ e r (reet ()
But F (rect (%)) T'sinc (fT), hence the above becomes

F o) =5 16(F o)+ 6(7 + foll @ Tsine (f7)

Now using the property of convolution with a delta, we obtain

G (f) = 4 [ sinc((f — fo) T) + sinc ((f + fo) T)]

note: by doing more trigonometric manipulations, the above can be written as

2AT cos(mfT
G(f) =ity

3.1.2.2 part(b)
Apply the time shifting property g (t) <= G (f), hence g (t — tg) <= e 72"/ G (f)

From part(a) we found that F (g(t)) = 4L [ sinc ((f — fo) T) + sinc ((f + fo) T)], so in
this part, the function in part(a) is shifted in time to the right by amount %, let the new

function be & (t) ,hence we need to multiply G (f) by e 72"/ 3 ,hence

ofe- ) =

=H(/)
AT

= T (S5 Lsine (f ~ fo) )+ sine ((f + ) 7))

3.1.2.3 part(c)

Using the time scaling property g (t) <= G (f), hence g (at) <= ﬁG (%), and since we
found in part(b) that H (f) = _WfT( [ sinc ((f — fo)T) + sinc ((f + fo)T)]), hence

FA{h(at)} = |a‘e —Jm T (AT { sinc ((5 — fo) T) -+ sinc ((5 + fo) T)D

3.1.2.4 part(d)

Let f (t) be the function which is shown in figure 2.4c, we see that

f(t)=—=h(=t)
where h (t) is the function shown in figure 2.4(b). We found in part(b) that
, AT
H(f) = eI (S [sine ((f = fo) T) + sine (f + fo) 7))
Now using the property that h(t) <= H (f) then h(—t) < |_L1|H (—=f) = H(=f),
hence

FAF @)} = —e™T (4 [sine (= f = fo) T) + sinc (=f + fo) T)))
24
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3.1.2.5 part(e)

This function, call it g; (f), is the sum of the functions shown in figure 2.4(b) and figure
2.4(c), then the Fourier transform of g, (¢) is the sum of the Fourier transforms of the
functions in these two figures (using the linearity of the Fourier transforms). Hence

F 01 (0) = T (S0 Lsine (= fo)T) -+ sine ((f + o) 7))

inpr (AT | .
— e <2 [ sinc ((—f — fo)T) + smc((—f+f0)T)])
The above can be simplified to
F(g1(t) = AQT (sinc (f+ fo) T) [ejwa n e_j”fT} +sine ((f = fo) T) {ejfrfT n e_jwaD
- AZT (sinc ((f + fo) T) [2cos (m fT)] + sinc ((f — fo) T) [2cos (nfT)])

Hence

F (g1 (t)) = AT cos (mfT) [sinc ((f + fo) T') + sinc ((f — fo) T)]

3.1.3 Problem 2.2
Given g (t) = e 'sin (27 f.t) u (t) find F (g (t)) Answer:

Flg)=F (eu(®) @ F (sin(2rfet)) (1)
But ]
F(sin 2rfot)) = o2 00 = fo) =0 (f + fo)] (2)

and

e} o

/e o2t gy — / —t(1+52nf) gy
0

e—t(1+527f) } 0_1

T —(1+j2rf)  —(+j27f)

_ 1 (3)

1+ g2nf
Substitute (2) and (3) into (1) we obtain

1 1
Fg(t)= 5[5(f—fc)—5(f+fc)]®m
]
2j [L+g2m(f = fo)  1+52n(f+[e)
3.1.4 Problem 2.3
3.1.4.1 part(a)
t 1
g(t)=Arect <T - 2)
-
= A rect ( T )
hence it is a rect function with duration 7" and centered at % and it has height A
t)+g(—t
MEICETIC) "
_ 9 —g(=t)
Jo = 5
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1

Hence g, = % Arect (£ —1) + A rect %t — 7)} which is a rectangular pulse of duration

T 2 2

2T and centered at zero and height A
9o =3 [A rect (L — 1) — A rect (% - %)} which is shown in the figure below

T 2
A
9(t)

0 T/2 T

Al2
even part of g(t)

T T

Al2
T odd part of g(t)
T
-A/2

Figure 3.1: rectangular pulse

3.1.4.2 part(b)

Flg(t) =F <A rect <t;§>>

= AT sinc (fT) e 12l %
= AT sinc (fT) e ™7

Now using the property that g (t) < G (f), then g (—t) < G (—f), then we write

Fg(=t)=G(=/)
— AT sinc (—fT) ™7

Now, using linearity of Fourier transform, then from (1) we obtain

o) = (HO12E0)

[F(g(@) +F (g(=1))]

== [AT sinc (fT) e ™71 + AT sinc (—fT) ej”fT}

AT , ,
= {sinc (fT) e ™7 4 sinc (—fT) e”fT}

— Do =

[\]

now sine (—fT) = Sinﬁ;%ﬂ - _Sil;(}r{“T) = sinc (fT), hence the above becomes
AT sinc (fT . A
F (ge (t)) = SH;C(f) [ e_Jﬂ'fT + e]ﬂ'fT:|
AT si T
— SH;C(f) [ 2 cos (WfT)]

26



3.1. HW 1 CHAPTER 3. HWS

Hence

F (ge(t)) = AT sinc (fT') cos (n fT)

Now to find the Fourier transform of the odd part

oo 2090
Hence
Fgo(t)=F (g g _29 (_t)>
_ ; IF (g () = F (g (—t))]
= ; [AT sinc (fT) e ™" — AT sinc (—fT) ejﬂfT}
— AZT [sinc (fT) e /™7 — sine (fT) ™7
_ AT sinc (fT)) [ e ImIT _ ej”fT}
2
_ —AT sinc (fT) [ oI TfT _ e—jwa}
.2
_ AT SI;C UT) [ 2jsin (7 fT)]
Hence

F (9o (t)) = —jAT sinc (fT)sin (7 fT)

3.1.5 Problem 2.4
G (f) =G (f)l =)

Hence from the diagram given, we write

{1><ej72r -W<f<0

GUI=Y 1wt 0<f<W

Therefore, we can use a rect function now to express G (f) over the whole f range as

follows w w
G(f)=e'% rect (f ;/2> — e 3rect (f ;/2>

Now, noting that ¢ (t — tg) < e 720 and 6 (t + to) < €/?™ and W sinc (tW) < rect (%)

and noting that shift in frequency by %becomes multiplication by e‘ﬂ”t%, then now we
write

7 _w
g(t)=Fr"" <€jg rect (f—;/2>> —F (e—ﬂ"émct (f W2 ))
F

e et (e (G)) e

Hence

g(t) = [5 (t + ;T) ® W sinc (tW) e_jz’”vz’v] — [5 (t — ;T) ® W sinc (tW) ejZﬂ—tVQV:|

= W sinc ((t + ;T) W) e (H5) % _ W sinc ((t — ;T) W) 2 (t-3) %

= W sinc ((t + ;) W) e ITWIITWS W sine ((t — ;T) W> eITWt=iTW g

Hence

g(t)= We‘ﬁ (sinc ((t -+ %) W) e—I™Wt _ gine ((t _ g) W) ejﬂWt)
27
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3.1.6 Key solution

Fe 473 | o

CHAPTER 2

Problem 2.1

(a) The half-cosine pulse g(t) of Fig. P2.f(a) may be considered as the product of the
rectangular function rect(t/T) and the sinusoidal wave A cos(xt/T). Since

rect(%) = T sinc(fT)
A cos(FE) = Bla(r- 3o « 8(te 3]

and multiplication in the time domain is transformed into convolution in the frequency
domain, it follows that .

A 1 1
G(f) = [T sinc(fT)) ¥ .('5[6(!‘- =) + 8(f+ )]}
where rﬁ- denotes convolution. Therefore, noting that
StRe(fT) 4 6(f- ) = sinelT(f- 3]

A, 1 1
sine(fT) 3¢ 8(f+ 55) = sinclT(f+ 2]
we obtain the desired result
_ AT 1 1
G(f) = =5 [sinc(fT- 5) + sinc(fT+ 2)]
(b) The half-sine pulse of Fig. P2.)(b) may be obtained by shifting the half-cosine pulse
to the right by T/2 seconds. Since a time shift of T/2 seconds is equivalent to multipli-
cation by exp(-jrnfT) in the frequency domain, it follows that the Fourier transform of the
ha'lf-sine pulse is
AT 1 1
G(f) = - [sine(fT- 5) + sine(fTe E)]exp(-jwf‘l‘)
(¢) The Fourier transform of a half-sine pulse of duration aT is equal to

Eg— [sinc(afT - -;-) + sinc(afT + %)Jexp(-J:afT)

(d) The Fourier transform of the negative half-sine pulse shown in Fig. P2.1(c) is
obtained from the result of part (¢) by putting a= -1, and multiplying the result by -1,
and so we find that its Fourier transform is equal to
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== s S )

- %I{sinc(f‘h %) + sine(fT- %)]exp(,j:r‘r)

(e) The full-sine pulse of Fig. P2,1(d) may be considered as the superposition of the
hal f-sine pulses shown in parts (b) and (c¢) of the figure.

pulse is therefore

G(f) =

% (sinc(fT- %) + sinc(fT+ %)][exp(-Jtﬂ')-exp(Jtﬂ)]
-JATUsine(fT= §) + sine(fT+ $)1stn(xfT)

+ 2 ]sln(:t“l‘)
=T+ ;

sin(wfT= -;-) sin(sfT+ %)
~-JAT

[
2fT= 2

—JAT[- cos(:ﬂ‘) N cos(:fz)]sm(.ﬂ.)
*fT- 5 ¥fT+ 3

Jﬂ.[sin(af‘r) - 3in(2afT),
1 3

sin(2ufT-x) . sin(2xfT+x)
M- =5 fF=a * arta )

JAT[sinc(2fT+1) - sinc(2fT-1)]

2.2

Problem 2.

Consider next an exponentially damped sinusoidal wave defined by (see Fig. 1) ¢

g(t)=expl{ — t)}sin(2nf s hA1)

In this case, we note that

Therefore, applying the frequency-shifting property to the Fourier transform pair
we find that the Fourier transform of the damped sinusoidal wave of Fig. 1 1s

1
sin(2nf1)= 3 [exp(j2nfe) —exp( —j2nf1)]

1 1 L
)= [T:E;(T-Tp - TIjzn(f+L)]
~ 2xf, .
(1422 + 2nf.P

/ﬁff > NI S

The Fourier transform of this
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FE b3 i #/

gin

expl—tl ~

A L

Figure | Damped sinusoidal wave.

Problem 2.3
{a) The even part ge(t) of a pulse g(t) is given by
8,(t) = 2alt) + g-t))

Therefore, for g(t) = A rect(% - %). we obtain

B (t) %[rect(% - -;-) + rect(- % - %)]

%[reet(-?-rg)]

which is shown illustrated below:

g(t)
A
t
o] T
ge(t)
A/2 _
| :
-1 T

s
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FE 443 Vel Viicashs

1e¢ odd part of g(t) is defined by

1
go(t) = 5(3(1:) - gl{=t)]

A t 1 t 1
= slrect(y - 3) - rect (- 7 - 3]
which is {llustrated below:
go(t)
A
2
-T t
T

]
(N1}

(b) The Fourier transform of the even part is
G (f) = AT sinc(2fT)
The Fourier transform of the odd part is

Go(f) s —A—lz‘ sinc(fT) exp(-j»fT)

- % 8inc(fT) exp( jxfT)

- % sine(fT) sin(xfT)

Problem 2.4

exp( J !2-), M <r<o
G(f) =1 exp(=3 3, 0¢rgw
0, otherwl se

Therefore, applying the formula for the inverse Fourier transform, we get

. 0 w
g(t) =/ exp(y Pexp(janft)df + / exp(-J Hexp(yanfeide
W 0

Replacing f with -f in the first integral and then interchanging the 1limits of
integration:
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EE 443 Sw# Jse &

)
glt) =/ exp(-j2rft « %) + exp(Jouft - J!z-)]df
0

2/ cos(2ift- Hdr

= O xX

s 2/ sin(2sft)d

[ cos(Zsre)]'
* 0T .t
¥ 0
1 }
-'—t-ﬁ-eos(h\it)]

o

. 33 sin2(xWt)
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3.2 HW 2

Local contents

[3.2.1  Questions| . .
3.2.2 Problem 2.30
2. Problem 2.32

3.2.4 Problem 2.33
3.2.5 Problem 2.35
3.2.6 __extra Problem
[3.2.7  Key solution]

3.2.1 Questions

(a)
(b)
©

oy
©)

<)

Problem 2.30 Determine and sketch the autocorrelation [unctions of the following exponen-
tial pulses:

(a) g(t)=exp(—

V' () glty=exp(—alt))
V' () alt)=exp( —atht) —explarh( —

~ Problem 2.32 Determine the autocorrelation function of the sinc pulsc A smc(th), and
sketch it.

~ Problem 2.33 The Fourier transform of a sxgnal is defined by |sinc( f ). Show that the auto-
correlation function of this sngnal is triangular in form. .

( #int " pind (6% P /m./ AT/ ). |

~ Problem 2.35 Consider a signal g(z) defined by

(Wt tise frey. clumerte Sppics )

Ct X “E(\m\o\\e.\,w_.

&
o<

cropf .

athult)
0

P
.- —Q( L

-

o

g(t)=Aq+ A, cos2nf,t+0)+ A, cos(2nfyt +6)
Determine the autocorrelation function R,(t) of this signal.

What is the value of R,(0)?
Has any information about g(z) been lost in obtaining the autocorrelation function?

Qo

SH @ I@) wharee  E@) Ay gt Shep

Laawcon

QA = + i(%) (S ch.t g(‘\*) a<o

o W2 20 L\ T

3.2.2 Problem 2.

Problem

30

Determine and sketch the autocorrelation function of the following

(b) g(t) =l
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(c) g () = e u(t) — e"u (1)

3.2.2.1 part(b)

e t>0
g(t) = 1 t=20
e t<0

Assume a > 0 for the integral to be defined. From definition, autocorrelation of a function
g(t) is

R(r)= [ g@)g (t=r)dt
Since g (t) in this case is real, then ¢* (t — 7) = g (¢t — 7), hence
R(r)= [ gt)g@t—r)dt

— 00

Consider the 3 cases, 7 < 0 and 7 > 0 and when 7 =0

case 7 > 0

9(t)

g(t—17)

Qe — —

Figure 3.2: Case 1 Part b
Break the integral over the 3 regions, {—o0,0},{0,7}, {7, o0}
0 T 00
R(71) :/ e“tea(t*T)dt—i-/ 67“te“(t77)dt+/ e e =) gt
—o0 0 T

0
2at
0 _ _ 0 —ar 1] —ar[1-0 —at
But ffoo eatea(t T)dt — o7 ffoo 20t it — ¢ m—[ 21 —e ar [ 2(1] _ e2a

and [] e~ et dt = 77 [T 1dt = e

and foo —at —a(t—T)dt at fOO —Qatdt at [e_2at]oo at [0_6_2(”] e” T
nd [“e e =e' [Te =e 5 =€ —a = 5
Hence for 7 > 0 we obtain
—arT —aT
R(1) = +7e T +
(7) 2a 2a
efaT
= + 71
a
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a(t)

Figure 3.3: Case 2 Part b

Break the integral over the 3 regions, {—oo,7},{7,0},{0, 00}

T 0 00
R(7) :/ e“te“(t_T)dt~l—/ e_ate“(t_T)dt+/ e~ e =T gt
—00 T 0

e2at]™
Now [T e®edt=Tdt = e=o7 [T_ e2otdt = e“”i[ 2(]1*‘” =e 7 =<

and [P et dt = 07 [V 1dt = —Te 07

aT

e—2at]>® ar
and [°e e a=T)dt = e‘”i[ Jo _ e (0—1)=¢<

—2a —2a 2a
Hence
eaT aT
R - - _ —at
(1) 5o Te YT + o
=| e (% — 7')
When 7 =0

R (0) gives the the maximum power in the signal g (¢). Now evaluate this

0 0o
R(T) :/ eMedt —i—/ e Mem 9t
—00 0

at0 —2at1®
— [62 t]foo + [6 2 t]O
2a —2a
1
T a

Hence

Or we could write
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This is a plot of R (7), first plot is for a = 1 and the second for a = 4

1+a (-Abs[t])

f[t_] := Exp[a (-Abs[t])] [
a

PlotLabel -» "Autocorrelation function for part(a), when a=1"]

Autocorrelation function for part(a), a=1
R(1)

T
6 4 2 2 4 6

PlotLabel -» "Autocorrelation function for part(a), when a=4"]

Autocorrelation function for part(a), when a=4
R(1)

Show[{Plot[f[t] /.a~>1, {t, -6, 6}, PlotRange - All, PlotStyle - Red, AxesOrigin- {@, @}]}, AxesLabel -> {"t", "R(t)"},

Show[ {Plot[f[t] /. a4, {t, -6, 6}, PlotRange - All, PlotStyle - Red, AxesOrigin- {@, @}]}, AxesLabel -> {"t", "R(t)"},

3.2.2.2 part(c)
g(t) = e "u(t)
Assume a > 0.

Consider the 3 cases, 7 < 0 and 7 > 0 and when 7 =0

case T > 0

caseT > 0

g(t)

exp(-at) u(t)

-exp(at) u(-t)

g(t-17)

eIy (t - 1)

o T
—e*Du((t- 1))

t

Figure 3.5: Case 1 Part ¢

Break the integral into 3 parts, {—o0,0},{0,7}, {7, o0}
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R)= [ g0gt—nd+ [(g0g@—nd+ [~ owglt—ma

0 T 00
_ _at ( a(t—T) dt +/ 6—at _ea(t—T) dt +/ e—at 6—a(t—7) dt
[ e (et )i [t (e de [T et (o)
0 T [e's)
— efaT/ €2atdt o efa‘r/ 1dt+ ea‘r/ 672atdt
—00 0 T
6Qat 0 —2at]>®
— e—aT[ 2]a—oo — reT + ear[ _2;1'
__—ar [1 — O} —at ar [O — 6_20”]
N 2a ¢t —2a
e—aT o N —ar
= —Te
2a 2a

case 7 < 0

case T < 0

g(t) M

0
-exp(at) u(-t)

g(t-1) N e 2Dyt - 1)
— t

e .
—eu(-(t-1))

Figure 3.6: Case 2 Part c

t

Break the integral into 3 parts, {—oo,7},{7,0},{0, 00}

R)= [ 90—+ [gwgt-mdt+ [T g9

—00

T 0 e
— / —ed (_ea(t—7)> dt + / _eate—a(t—r) dt + / 6—ate—a(t—7) dt
oo - 0

T 0 00
— e—aT/ 62atdt . eaT/ 1dt 4 eofr/ e—2atdt
—50 T 0

€2at T —2at]®
— efar[ 2i—oo _'_TeaT + eaT [6_2610
e~ [eZaT B 0] + o7 + o7 [O B 1]
= —— 4T —_—
2a —2a
T2 T T

aT 1
=e ( + 7')
a
At 7 =0, we see that R (0) = X, hence the final answer is
37
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Or we could write

R(r)=ela (- 7))

This is a plot of R (7), first plot is for a = 1 and the second for a = 4

1
f[t_] := Exp[a (-Sign[t] t)] [——Sign[t] t]
a

Show[ {Plot[f[t] /.a~>1, {t, -6, 6}, PlotRange - All, PlotStyle - Red, AxesOrigin— {0, ©}]}, AxesLabel -> {"t", "R(t)"},
PlotLabel -» "Autocorrelation function for part(a), when a=1"]

Autocorrelation function for part(a), when a=1
R(1)

,

Show[ {Plot[f[t] /. a~4, {t, -6, 6}, PlotRange » All, PlotStyle -» Red, AxesOrigin- {@, 0}]}, AxesLabel -> {"z", "R(z)"},
PlotLabel -» "Autocorrelation function for part(a), when a=4"]

Autocorrelation function for part(a), when a=4
R(1)

Figure 3.7: Part ¢

3.2.3 Problem 2.32
problem: Determine the autocorrelation function of g (t) = Asinc (2Wt) and sketch it

solution:

R(r)= [gt)g" (t—7)dt

The above is difficult to do directly, hence we use the second method.

Since the function g () is an energy function, hence R (7) and the energy spectrum density
U, (f) of g (t)make a Fourier transform pairs.

R (1) < ¥, (f)

Therefore, to find R (7), we first find ¥, (f), then find the Inverse Fourier Transform of
U, (f), ie.

But
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and we know that

. A f
ASIDC (2Wt) = ﬁrect (W)

Hence

The (2) becomes

Hence from (1)

Hence

R (1) = (5&) sinc (217)

This is a plot of the above function, for W =4, and A =1

A=1;
W=2;
A2
[t ] := (—] Sinc[Pi2Wt]
2W
Show[{Plot[f[t], {t, -6, 6}, PlotRange » All, PlotStyle - Red, AxesOrigin- {@, ©}]}, AxesLabel -> {"c", "R(t)"},
PlotLabel -» "Autocorrelation function when A=1,W=4"]
Autocorrelation function when A=1,W=4
0.06|
0.0
0.03
an LA l
RAG A ,yvvv vvv i :

Figure 3.8: Plot for W =4, and A =1

3.2.4 Problem 2.33

The Fourier transform of a signal is defined by |sinc (f)|. Show that R (7) of the signal is
triangular in form.

Answer:

39



3.2. HW 2 CHAPTER 3. HWS

Since

R(7) < |G (f)

Then

R (1) < |sinc (f)]2
& sinc? (f)

Hence to find R (7) we need to find the inverse Fourier transform of sinc? (f)
But
F (sine® (f)) = F " (sinc (f) x sinc (f))
=1 Hsine (f)} @ {sinc (f)}

But £ ! {sinc (f)} = rect (t), hence

F! (sinc2 (f)) = rect (t) ® rect (t)

= /rect (1) rect (t — T)dr

This integral has the value of tri (t) (we also did this in class) Hence

tri (1) < sinc® (f)

Hence

R (1) =tri(7)
Where tri (1) is the triangle function, defined as

1—|t t| <O
m’(t):{ i i

0 otherwise

3.2.5 Problem 2.35
Consider the signal g () defined by

g(t) = A+ Ay cos (2mfit + 6) + Ay cos (27 fot + 0)

(a) determine R (7)
(b) what is R (0)
(c) has any information been lose in obtaining R (7)7

Answer:

(a)

Take the Fourier transform of g (t) we obtain

G(f) = Ad () + 5L [ (F — )+ e (f + )]+

S0 = fo) + 8 (f + fo)]

Hence |G (f)]> = G (f) G* (f), so we need to find G* (f)
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G%ﬁ=Aﬁm+ékJ%U—m+a%0+mhéﬂv%0—ﬁﬂw%6+ﬁﬂ

So

2 2

GG () = A5 (1) + L5~ )+ 0+ R+ 20— ) 437+ fo)

So
> At A3
S (f) :A05<f)+Z[6(f_f1>+5(f+f1)]+Z[6(f_f2)+5(f+f2)]
So
R(r)=F"" (S, (/)
(D) + P~ ) I Sl 2T~ ) 8 )
Hence
R(r)= A2+ A; cos 2 f1T + %5 oS 27 for (1)
Part (b)
Al A3
R(0) = Aj+ 5 t5
:;@%+A%%@
part(c)

In obtaining R (7) we have lost the phase information in the original signal as can be seen
from (1) above

3.2.6 extra Problem

(a) find £ () ® & (t) where £ (¢) is unit step function

(b)Find & (t) ® e™¢ (t) where a > 0

(c)find u (t) ® h (t) where h(t) = e 3'u (t) and u (t) is as shown

U(t)

4T

Figure 3.9: Extra problem

To DO
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3.2.7 Key solution

£E 443
" 2p ) Sece [/Awg}/&"ﬂf Vi (Zg)
ST b)) g=

42(¢ .
& . /L[{_j -0 — L
N

chrip

z

@xf(i ﬁH/ e é/{%d‘[{) +
o) Since FH) o el tee Ly (T) W
be texl as Eren =>

g(t-1)

a({-T) '
e =N CF
— J

o] T T )

. 0 .
R (1) = J explat)explalt-1)idt
g e
T

0

T

= (%., 1) exp(-at)

]
Rg(T) = (; + 111} expl(-alt})
which is illustrated below:

R (1)
g

+ / exp(-at)expla(t-t)ldt

+ J exp(-at)expl-a(t-r)ldt

| Arrd ey | e |

Y
e d(-%)

£

Therefore, for >0, => K’jé(() = //ﬁ%/f/%&z —(Zj/ZL

%—5 exp(-at)+t exp(-at) + %5 exp(-~at)

Since Rg(-—r) = Eg(r), we may express ,Rg(T) for all 1 as follows:

0
(c) g(t) = exp(~at)u(t)-explat)ul-t)

For 1>0, we .have

o > v

Fae |

Wi’ > o

Ry ()= 3T

R Y el
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g(t)

-

NI ) /e e

-

Therefore, for >0,

0
'Hg(r) = J explatdexpla(t-7)ldt

omo

T
~ J exp(-at)expla(t-r)ldt
[¢]

+ f exp(—at)expf—a(t—r)]ﬁt
T

2a

n

exp(-at)-1 exp(-at) + exp(-at)

L
2a
= (l-— 1) expl-at)
= (3 2
‘Since Rg(—T) = Rg(r), we may express RE(T) for all 1 as follows:
1 "
Rg(T) = (; = 1T exp(-alt])

which is illustrated below:

R (1)
g

TEEESee T

VAV .IN

P

/
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& o ) —~ £ T v -
E& Ny 2 ) A sinc(2vt) = 57 reCt(ZW) — C;(;:/

im—— Since .

R (1) == 16(0 |2 : :
g — ’ . .
it {'ollows that for the given =inc pulse
2
Rin) == A reotf

e ;’)

Therecfore;

'./

S
Rg(t) = g sinc(241)

which is shown illustrated below:

R (1)
g

Problem 2.33

G(f) = |sinc(f)] 4, .

Therefore, '

& .

7
6012 = sincl(r)  a—a /ég, 07:}

The function sinc2(f) represents the Fourier transform of a triangular pulse of
amplitude and width 2 secornds,; centered at the origin.

'unit
Therefore, i
-1t i, 11 1<
R (1) =
& o, f1>1
which is illustrated pelow:
R (1)
g
1.0 °
T
-1 o]
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£E 44 3

| o 2 ‘ /f/ﬂ/#/

|ppe 47

223

(becod bwitied)

K
¢

6H) = e (1) |

ﬂﬂﬁ)&ﬂé>/@@/r—§mcﬁ7

- gmc/fa/ . Sine (
N

Z

W i
%%éﬁfww;vﬁw@%ﬁ)
oy o
W g;[i") = g{éﬁf) - ;:[Si‘mc(f)]: 22@2‘/2/.
_ILOC
Ry (1) = £ g;(z)g(&(zt—zp/% _
4,2 NEA
I L s
Jo(T-2)
- I
| zTAL/} (Z+4)
2 Hen o W//"/ “He @m/a% wlio— fotg
7 7 .
(o 7 <-l g(f o
14T — < T<o0
fg(t)zﬂ, T o<l <y = T
! . 2 ~ ‘ J r
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o A
235

(a) glt) = AO + A1 cos(2nf1t~e)+)\2 cos(2wf2t+e)

Therefore

A
GUE) = Ay 6(1) + —5 [6(f=1 )exp(Jo)+8(f+f,dexp(-19)]

A
4 52 18(f=F )exp( J8)+6 (£ Jexp(-18))
and

2,2 27 4 :
G(NY[T = Ay 6(f) + ¢~ [6(f’-f1)+6(2‘+f1)] + Y [6(!‘-—!‘2)4-6(!‘4»[2)]

Since Rg(‘[) ':—"— 'lG(f)|2

it follows that

2 2
2 M Ao
Rg(r) Ay + 5 cos(2'nf11) 7 cos(2uf21?
- ; A
(b) RB(O) = Ao 5+ 5 -

(¢) We see that Rg(r) depends only on the dc¢ component AO' the amplitudes A1 and Aé of
the two sinusoidal components and their frequencies f‘l and f2. The phase information
contained in the phase angles of the two sinusoidal components is completely lost when
evaluating RS(T). » . I
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oV eeyys | e |
Extos /7/2&5#97)

/}Z//V%i ﬁc%@J
= valuwedde “he (ﬁ;,%//m% iy ltlecwn
' + 0
ay g4 xSy :,f c(r) €(t-T)dT
’ et
d/c/\ y f%/ L—,f_?‘u f>/9
= //f dT — , 2
e T Le .~ <o
S(x-T)
| |
‘i ———C
4
QC/— /‘vwz—J
‘ . a T , , L
b g - bsi) x e S = | ey (1T s
PAR i €
2 < o
'/(/7/\
g/
at at 1
"
19} o
Z
{i e " [
Zo e < b
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- %a/mﬁgﬁ - | Hwr 2 g

Ve

?fL

(7 Ern ;@2&%5 —

’ at —at
foptha) e E4) x e 5&)
Note | 77{5 ﬁ@i@w/@@/% 2 anmust bz /I/Eégya,fak/a
5\/*///’ Ezw ' e 7%5 Z&w Lo ,Zu, ‘/L et /rﬁ,{ﬁ?y"@’gag
widl et zfm/éfag-c , |
al Ay
a o o £(t) e e (-t
‘\? -
ot |t

/; r <o
" iﬁ/ = ( ’i‘; ' => /(,/Z‘/ = “%ﬁj

=)

[

/ alt-z7) el

ar ~al )V
Jt) = e SG)* e §(~f/ = / e sle) e ST

Z

alt/
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cr yé‘j |

L AL

HL

%f/\ ULL) = et [ E22T) FiT) - 2%
SiVee illl)ss }\
A //”’)/ ] o ar ‘ (o
)= uy s ht) a T |
o S
47 -
Q> Vol st ZL < © > éf\/j[/ = O
b)) Foeolt <G T
rt sz szt -3
L) = | 1 e AT = - £ _ e
\/O 3 , =3
) Fon I A }7\]

Z/_ t t=47 z s
| e 7 = L/ e e /
t=47 Lo

B é—;‘z:/ ,’QTd ‘/!A |
R Y.
o
S~ Pro 27 &, b, e G e
| 7= U € ") / ;
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3.3 HW 3

Local contents

[3.3.1 questions| . . . . . . ... 51
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.35  Problem 2.15] . . . . . . ... 54
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[3.3.8  Keysolution| . . . . . ... o8

3.3.1 questions

7 4 3 Jon =# 3 St |7, 2009

e oy bt et 4 <

CH. 2 / SIGNALS AND SPECTRA

2-3 The voltage across a load is given by v(f) = Ay cos wgt, and the current through the
load is a square wave,

) = t — nT, t = nTo — (Ty/2)

35 3 [n(i2) -n(t=shz e
10 =1 E_.,, To/2 o2

where g = 27/Ty, Tp = 1 sec, Ap = 10 V, and I, = 5 mA.

(a) Find the expression for the instantaneous power and sketch this result as a

function of time.
(b) Find the value of the average power.

2-4 The voltage across a 50-{) resistive load is the positive portion of a cosine wave
That is,

o(t) = {10 cos wpt, |t = nTo| < To/4
0, t elsewhere
where n is any integer.
(a) Sketch the voltage and current waveforms.
(b) Evaluate the dc values for the voltage and current.
(c) Find the rms values for the voltage and current.
(d) Find the total average power dissipated in the load.
2-5 For Prob. 24, find the energy dissipated in the load during a 1-hr interval if T -
1 sec.
2-6 Determine whether each of the following signals is an energy signal or a pow
signal and evaluate the normalized energy or power, as appropriate.
(a) w(r) = II(/T,).
) w() = II(t/T,) cos wpt.
(c) w(® = cos’ wyt.
\/ 2-7 An average reading power meter is connected to the output circuit of a transmitte
The transmitter output is fed into a 75-{) resistive load and the wattmeter reas
67 W.
(a) What is the power in dBm units?
(b) What is the power in dBk units?
(c) What is the value in dBmV units?
V/ 2-8 Assume that a waveform with a known rms value, V.., is applied across a 50-
load. Derive a formula that can be used to compute the dBm value from V.
[/ 2-9 An amplifier is connected to a 50-(2 load and driven by a sinusoidal current sour
as shown in Fig. P2-9. The output resistance of the amplifier is 10 ) and the inf
resistance is 2 k(). Evaluate the true decibel gain of this circuit.

Sinusoidal
current

source
Foms =0.5mA Amplifier 500 Vims = 10 volts

5

FIGURE P2-9

o1



3.3. HW 3 CHAPTER 3. HWS

PROBLEMS 81

2-10 The voltage (rms) across the 300-() antenna input terminals of an FM receiver is
3.5 uVv.
(a) Find the input power (watts).
(b) Evaluate the input power as measured in decibels below 1 mW (dBm).
(c) What would be the input voltage (in microvolts) for the same input power if the
input resistance were 75 () instead of 300 £?

2-11 What is the value for the phasor that corresponds to the voltage waveform v(r) =
12 sin(wot — 25°), where wy = 200077

2-12 A signal is w(r) = 3 sin(1007rz — 30°) + 4 cos(10077). Find the corresponding pha-
50T, '
2-13 Evaluate the Fourier transform of
e % t=1

win) = {o, t<1

2-14 Find the spectrum for the waveform w(r) = e~ What can we say about the
width of w(r) and W(f) as T increases? [Hint: Use (A-75).]

\/ 2-15 Using the convolution property, find the spectrum for
w(r) = sin 27f;t cos 27f,t
2-16 Find the spectrum (Fourier transform) of the triangle waveform

S0 = {At, 0<1<Tp
0, t elsewhere

in terms of A and T
\/ 2-17 Find the spectrum for the waveform shown in Fig. P2-17.

w(r)

FIGURE P2-17 . t

—J
\/” 218 If w(t) has the Fourier transform Go) x(+_) = w(+ 4) e

__Jj2=f
W=7 + jomf

find X(f) for the following waveforms.
(a) x(r) = w(2r + 2). ot -t

ALl L _ 1) !73 a) X‘éf)":—' Kf{;m f)

3.3.2 Problem 2.7

Problem An average reading power meter is connected to output of transmitter. Trans-
mitter output is fed into 75¢2 resistive load and the wattmeter read 67W

(a) What is power in dBm units?
(b) What is power in dBk units?
(c) What is the value in dBmV units?
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3.3.2.1 part(a)

=| 48.2607 | dbm

dek = 10 lOglo Pk
= 10log,, (0.067)

=| —11.7393 | dbk
()
V2
pP=-
R
Hence
Hence
SO

201og;, V = 101log,, 67000 + 101og,, 75000
—| 97.0114 dbmV

3.3.3 Problem 2.8

Assume that a waveform with known rms value V,,,, is applied across a 50¢2 load. Derive
a formula that can be used to computer the dbm value from V,,,,

P (watt) = V%Eg(z‘)/)

Hence

Papm = 1010g, (10* X Pyare)
103 x V2 (V)

rms

R(Q)
=10 <log10 10°V2 —log,, R)

rms

=10 <log10 10° +log,, V2., — logy, R)

rms

=10 (3 + 2logyg Vims — logyo R)

Hence

dem =30+ 20 10g10 V;’ms — 10 1OglO R

When R = 502, we obtain
53
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Pt = 30 + 2010810 Vimms — 1010g,, 50
= 30 + 201080 Vyms — 16.9897

3.3.4 Problem 2.9
V oW ASSUME LIAL B WaYEILIL Fit s s oo oo e w g
joad. Derive a formula that can be nsed 10 compute the dBm value from Ve

{ and driven by a sinusoidal current soun

L/ 3.9 An amplifier is connected to a 50-02 lo
as shown in Fig, P2-9, The outpul resl

resistance 15 2 kfl. Evaluaie the true decth

- of the amplifier is 10 {} and the inj

FIGURE P2-2

Figure 3.10: the Problem statement

P
Gain(db) = 10logy, ?L

VTQM S
Rr,

12 R;

rms= n

(%)

(0.5 x 10-3)% x 2000

=10 (log; 10° — logy( 25)
=10 (5 — 1.39794)
= 36.021

3.3.5 Problem 2.15

Using the convolution property find the spectrum for w (t) = sin 27 f1t cos 27 fot

Solution:

F (w(t)) =F (sin2w fit) ® F (cos 27 fot)
But

F(sin2rfit) = 5= (3(F = £) =57 + 1)
F(cos2mfot) = 3 (5(f — ) +3(F + o)
Hence (1) becomes
P ={g 00 - -0+ m}e{fo0 - )
— LU= R =S+ R B~ )+ 6+ )

o4
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Applying the distributed property of convolution, i.e. a® (b + ¢) = a®b+a®c on equation
(2) we obtain

i F (w(t) =0(f — f1)@(f — f2)+0 (f — f1)@ (f + f2) =0 (f + f1)®0 (f — f2) =0 (f + f1)@0 (f + fa

3)
Now
5(f =) @8 (f = f2) = /M )0 (F = (A= £2)) d
5(f+fo= ) /6 (A= f2)) dA
6(f+f2— 1) (4)
And
5(f =) @3 (f+f2) = /M )0 (f = (A + £2)) d
5 (f = f2= f) /6 (A= f2)) dA
5(f = f2 = ) (5)
And
5(f+ 1)@~ )= /6<A+f1>6<f—<A—f2>>dA
5(f+fa+ ) /6 (A= f2)) A
5(f + fat ) (6)
And
5(f+F)@F(f+ ) = /6<A+f1>5<f—<A+f2>>dA
5(f = fa+ ) /6 (A= f2)) >
6(f=fat fi) (7)

Substitute (4,5,6,7) into (3) we obtain

Fw®) =20+ fof)+0(f—fom f1) =8 (f+ fot 1) =8 (f = fo+ f1)

Flw®)=g50f+ =) +0(f—(fot /1) =0(f+(fot /i) =0 (f = (fo = f))]
(8)

This problem can also be solved as follows

w (t) = sin 27 fit cos 2 fot

25
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(sin (a — B) + sin (a + f3)), hence

DO

Using sin acos 3 =

w(t) = ; (sin (27 f1t — 27 fot) + sin (27 f1t + 27 fot))

= 56 2n (= £2)0) + sin 27 (f + f)1)
=5 (5 00 = 0= ) =0+ (= )+ 5 60 = (i 2) =67+ (1 + )
41{5( — (=) =0+ (hi—f)+6(f = (fit+ f2) =0 (f+ (L +/2)}
41{ (f+(fa=f))+0(f = (ot /) =0 (f+(fat f1)) =0 (f = (f2— f1))}
(9)
Compare (8) and (9) we see they are the same.
3.3.6 Problem 2.17
w(t) =4 rect (i) — 2 rect (;)
By linearity of Fourier Transform
F(w(t)=4xF <7‘ect (i)) —2xF (rect (;)) (1)
Since
a (rect (i)) = 4sinc (4f)
and

r (r@ct (;)) = 2sinc (2f)

Then (1) becomes

F (w(t)) =4 x4sinc (4f) — 2 x 2sinc (2f)

=| 165sinc (4f) — 4sinc (2f)

Or in terms of just the sin function, the above becomes

sin (47f) 4sin (27 f)

F(w(t) =16 Inf 2]
B 4sin (Arf) 25111 (27 f)
N wf 7 f
_ | 4sin(4nf)—2sin(2rf)
wf

3.3.7 Problem 2.18

If w (t) has the Fourier Transform W (f) = 2L find X (f) for the following waveforms
(a) z (t) = w (2t + 2)

(b) z(t) =w(t—1)e™

(c) z(t) =w(l—1)

Answer:

o6
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3.3.7.1 Part(a)

)2
w (t) A
14727 f
Then
1L (f
2t) & =X | =
v 3x (1)
1 .
w(2t+2) & =X / ei2m3(2)
2 2
Hence
2L _
w(2t+2) & LQ}@ eI?f

1
2

ok j”f 2
2\ 1+ jrf

w(2t+2) & Q(E}C_j)ej%f

This can be simplified to

3.3.7.2 Part(b)

j2nf
14 92nf

w(t) &
w(t—1) e X (f)e 2 /D
w(t—1) e X (f) e
Now Let 9% = ¢72™/of ‘hence 2rfy = 1 or fo = 5, then

w (t _ 1) e*ﬂﬂfot o X (f + fo) 61277(f+f0)

Hence
w (t _ 1) eIt o j271' (f + fO) eI2m(f+fo)
L+ 527 (f + fo)
-2 L
wt—1)e ' & il (f - %) 32 (I+35)
L+ 527 (f+ &)
w(t—1) LN j2m (2 f +1) oI (2mf+1)
2 + j2r 27 f + 1)
) A2 12 ) )
wt—1)e " < ]71'.f—|—j71'. eIl el
2w + jam2f + j27
w(t—1) eIt o Leﬂﬂfe]
—Jj+2rf+1
Hence
—1 27 1 (27
w(t—1)e < ijcﬁem )
3.3.7.3 Part(c)
j2rf
t) & ———
wt) = o
w(—t) & X (=f)
Then
w(—t+1) e X (—f) >
) A
w(l—t)< LU ,Wf et
1—g2nf
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3.3.8 Key solution

seTr st Vo
Key So/lufrom -
2- '7[ o
@) dtn= ohg () = o log ($7) = 48,26 4B
(§) ATk= /oloa,—’g—',,—l,) o 07_6-—) — .74 A8k
) p Nrms Vrms

> Vm-/P = s = 70k

#JBV'ZDIO}(WQ = 9748ml/

l P= Vr = m
ol = 10 I (m.) 10 gy (3] = 201y Vo 10ks, 0099
> ABu= 20 bg, (Vo) +13

:] Pz Ri = (05153 (2345) = SoxRtW

/D -
300\«t='75:m4 ""f"og" = 2w

Jg: blo%,‘,( B ) = oy (i) = 34 B

ln

_R-18] Z wit) -.Qah(iw{-&) oS (1rfd) = 4 (a3 ()
> Win= W B[0)=[E S TR % [10(F) +4]]
Aside: SEH)RTIE) = [TEOEE)TEHA = SE+H34)

s WiS) 2(i4) [S6+548) +5EH-6) ~SE-F45) - SIE-4]]

o8
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EE 443 S #3 e =
Call Wit) = Vi) -1 ) where
wlWilt) =¢sect (£, )
I | e—— s WW=I1eSipp (%)
2 t> ﬁﬁ
1w =20e40%)
a5 —> WH-= 4Sime(2f )
YT SWEMOL = LS - ysie 2
| 2-18)
E @ wat) > §

s Y
3 ¥:zw(rt) e—> W

&) w(t-1) P S—- -\li{—-e""aﬁf

I14J%f )
YioP 2 (f1d) JUT(Frk)
)zl w(t-) «—— T‘-u'Tms.f%e Am

@ Uvd) 5 o (EswWe)

. . _gmr
% 9(&/ Hd#ﬁ[r o d T 14Imf

@) wrlt) <> W) = - 4L

SFT s

> W= r(-w) «—> wdmi__ginf

1=y Trf
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C) ¢ For gl A gm (,e;,-a /Z/?gﬁyﬁ? WZ:P ,:

2 L2 V

P Y RZow _ V peais =5 V ~ pesk
— = e - Mann =

aJ 2 Ve

* Lo mof ppemlize’  Ade (/@:}é/ﬂ.}
9 0
P _— %Zm - ‘/ﬂfdk
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/7[ PW L arne G- =5 /mé’/ Y0
ﬁ/ﬁlm Vo /s p }//ZM/; [démy =2 ‘% %2”0 (MV)

K}mea
ﬂ:ﬁ) GVt~ A i€ [y Lz,
0[“‘) = V;’&’lc % WO ,.Z‘;l/)

[
7% AN E 2 GAE /w/e‘/z AC / 7%/ /7@’7/ Y J1e €

pver pre pewed, 10 = 7’ <=
7o 7o
e ! 2 2 2
ZV, z = __fTaVZ///% :—r;/ Vo, £ g dt
J V‘L T/V - a/z/ 2
27, 2 (1+ trguwotjol+ = - ;
%
2 l//z,_ 2
of RFE) N => 5, - /’Wé - i/m
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B46

problem 5| .
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Key solution|

3.4.1 questions and hints

FE GYS s e fLge. )

“- s

Problem | Evaluate the transfer function of a linear system’ represented by the blick
diagram shown in Fig. P2.14.

x{2) > S de 5 S e i

Delay Delay
T T

Figure P2.14

Problem 2.

ta) Determine the overall amplitude response of the cascade connection shown in P2.:3.
consisting of V identical stages, each with a time constant RC equal to t,.
tby Show that as N approaches infinity. the amplitude response of the cascade connection
approaches the Gaussian function exp(—%*T*)\. where for each value of N. the time
constant T, is selected so that
T
4t N

2
=

R R R

l Buffer I Buffer I Buffer
CT amplifier CT amplitier ¢ amplifier

Figure P2.15

Problem 5 Determine the pre-envelope y4ir) corresponding to each of the following two

|
signals: 3
i \ ( Mowf  #be /gmn‘ 2L g /~ c’«sé g’;i/mwé# 41/

gt =sinclt)
ibt ytri=[1+k cos(2nf,(t)]cos(2af.r)

Prob é*) VW %/%W% T
c) f g = 04 = 5 =

/a&&%
b JH) =L > FH) =47

prob ¢ < ) Pespsnd posh - 244 o S e
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| /[%),/WM;/ = ZH)= W,;{ Wy SW)SH) (2

Aol W[yj y é//wéfm ey (1) 2 (2 1/)/7/

Mothod # 2
Sz /@5% ////27/ s /m/wéo ﬂ%ﬁ/ﬂ/)@/

Tee  4p)= £ TLEAT
7 gl KB 2 F w/ S Me 2= f/z/

il b fp)e [lt)-sh-r)]d = 7

Jonoh #2
2)
Nk | Begor A /%p fos m/ Farn => El)=)H
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3.4.2 Problem 1

Solution Using transfer function cascading, then the overall transfer function for the
system can be written as

Where

H(f)=H (f) Hi (f) = [H ()]

65

(1)
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Where
Z(f)IF{/w(T)dT}
1 W (0)
onf (f)+T5(f) (2)
Where

W(f) =1 o ()~ 2 (= T))
= X(f) =X (f)e T

=X (f) [1 - e‘jQWfT] N
substitute (3) into (2) we obtain
Z(f)= LX (f) [1 —J27rfT} L X (0) [1 - e*j27r0T] )
j2rf e .
1 j2n fT
:WX(f)[l ei2m 1] .,
Hence
H, (f) = ZEJJ?)
— ﬁX (f) [1 — e*ﬂﬂfT}
: X()
Hence

Hy (f) = 5 [1 — e727]

j2nf

Hence from (1)

A S

= 1=’
m

Hence

H (f) _ (27r1f)2 [26—3'2wa _ o iAmfT _ 1}

3.4.3 Problem 2
3.4.3.1 Part(a)

Transfer function for each stage is H; (f) = () = Ti2.R0

Since RC' = 1y, hence
H; =
(£) 1+ 27 fr
Then, for N stages, the overall transfer function is

H(f) =Hy (f)Hz (f) - Hy (f)

Since they are identical stages, then the transfer function of each stage is the same, and

the above becomes N
1
H(f)=—
(F) <1 —I—j27rf7'0>

66
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Hence the amplitude of the response is given by
1 N
H(f)=—0
1H (1)l <|1 +j27rf7'0|>

()
12 4 (27rf7'0)2

1 N
B ((1 +4w2f273>5)
1

(1 + 472 f272)

N
2

Let 72 = 1y, the above becomes
1
|H(f)] = P (1)
(1+57)
3.4.3.2 Part (b)
Let a = f?72,3 =1, then (1) becomes
1
|H(f)’ - BN
(1+%)
But impy e % = e*? hence
(1+%)
1
‘H (f)| = 2.2
e 2
. f2T2
= e 2
Which is what we are asked to show.
3.4.4 Problem 3
3.4.4.1 Part(a)
(a) g (t) = sinc (?)
g+ () =g (t) +7g(t) (1)

Where g (t) is Hilbert transform of g (¢) defined as § (t) = g (t) ® =

G(f)=—jsgn(f) G(f)
= —j sgn (f) rect(f)

Now find the inverse Fourier transform.

I derive the above to answer problem 4 part (b). The answer is the following (please see
problem 4 part(b) for the derivation

1
§(t) = — (1 —cost
§(t) = — (1 —cost)

sint

’ then the answer becomes

In the above, I used sinc (t) = 22 If one uses sinc (t) =

(1 —cost) (2)

~ | =

9(t) =

The problem statement seems to want us to use the second definition of sinc (t), so [ will
continue the rest of the solution using (1).
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Substitute (2) into (1) we obtain

H

1 — cost)

(
)

1eJt—e it1 e]t—l—e]t
T 27 +¥ I 27
J

9+()—Smc()+J;

sm t 1
‘I'];

1/t — et Lelt +e77t
Tt 2 t ot 2
16]t+j+16]t
t2j t2j

Hence

g+ (t) =5 (7 +¢)

3.4.4.2 Part(b)
g (t) = [1 + kcos 27 fut] cos (2 f..t)

g+ () = gt) +3g(t)
Where g (t) is Hilbert transform of ¢ (t) defined as § (t) = g (t) ® +.

2G(f) >0
Gi(f)=1 G(O) f=0
0 f<0
But
G(f)=F [1+ kcos2mf,t] @ F [cos (27 f.t)] (1)
But )
Fleos (2mfet)] = S [0 (f = fo) + 0 (f + fo)]
and

F I+ keos2mfuf] = 6 (F) + 5 5 (F = fu) + 6 (f + fo)
Hence (1) becomes
SN = {31+ 550~ )57+ £} 550 1+ 57+ £)
=5 @ (7~ f)+ 3+ fo)
PP = I U+l ® 5 (7~ ) +5(F+ 1)

= 3@~ )+
5@+ )+
5~ F) ®0(F  fo) +
5~ F) @ (F+ 1)+
S+ ) @5 (F~ 1)+
5+ F) ©5 (7 + fo)

N N - S I S - NG R
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Hence
G(f) = 36 (f+ fo) +
(- )+
20 = Tnt fo)+
B o f)
ZO(f+ fm + fe) +

75(f+fm_fc)

Hence for f > 0 ,G, (f) = 2G (f) and we obtain

e Il S B S - B R Bl N

G ()= 0(F = Flbg (57— f b F) 40T = o= F) 40T+ ot )+ 57+ o= fo)

Then (since carrier frequency f. > f,,), we could simplify the above, by keeping positive
frequencies f

o) =0T = J) 4 ST~ fu— F) 46 (F+ Fou— 1)

or

G (F) =6 = J)+ 515 (F =+ ) +6(F = (fe = F))]

Hence

g+ (t) — 6j27rfct + (ejQﬂ'(fm‘f'fc)t _|_ ejQW(fc—fm)t)

N TN T

— e]27rfct+ (6327rfmt€j27rfct+6]27rfcte—j27rfmt>

— pi2rfet [1 + (ejzrrfmt_i_ejwfmt)]

SN

— pi2mfet [1 + 3 (2 cos (27Tfmt))]

= 2™t [1 4 kcos (27 fot)]

3.4.5 Problem 4
3.4.5.1 Part(a)

g(t)=14(t)
i =9()®
:71r/5(7>t—17'd7-
:71r/5<7>1d7_
:;_oo (1)dr
B 1
Tt
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3.4.5.2 Part(b)
And Since sgn (f) = —1 for f < 0 and sgn (f) =1 for f > 0 then

G‘(f) =—j [—rect (f—f‘ll> + rect (f:iﬂ

Hence

1 A _1 .
But f ! (rect <fg4>) = Isinc (%t) e=327it and [ ! <7"ect <f 4>> = 1sinc (%t) eti2mit,
hence (1) becomes

—J
. (%) [eﬂ’z’t - e—jzt]
= sinc [ =
2 27
1 T
= sinc (t) {sm t}
2 2
. 1 sin Zt
But sinc (575) = %f hence
sin 2 T
g( ) = 7t sin <t
5 2
= — gin? zt
T 2
2 (1 1 >
= — (= — —=cosmt
Tt \2 2
1
= — (1 — cosmt)
3.4.6 problem 5
Stry,
iz
.
} i Ficure 2.47
-2 -1 0 | 2 Problem 2.44

2.45 Consider the square wave g(t) shown in Fig. 2.48. Find the power spectral density, average
power, and autocorrelation function of this square wave. Does the wave have dc power? Explain
your answer.

al v

Figure 3.11: the Problem statement
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Hence

o)1 (st (1) et (£))
< ()] e (9)]

= 4sinc (4t) + 2 sinc (2t)

7= Plot[4 Sinc[4 t] +2 Sine[2t], {t, -4Pi, 4Pi},
PlotRange - All]

Out[7]=

10

_ 10 s \/ v

Figure 3.12: Plot for problem 5
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3.4.7 Key solution

I i B

xt) 4 Wb Vi 2H) &) /77

&,
Problem =)~ E"ﬁ = (T |

The Fourier transform of this

The first integrator input is equal to x(t)-x(t-T).
It

input signal is [1-exp(-32xfT)X(L). The value of this transform is zero at f=0
follows therefore that the Fourier transform of the first integrator output is equal to

THet 125 W) = X)X M=) W)= xF)i 477,
f) Z{ﬂ = W— [?-exp(—JwaT)]X(f) Zl) = [ M{x‘}l? Y = 7 fE) - W ’65‘)}&1’//4’);6[/
Shce Wii)=0 = 24)- % 5) il
P2. s therefore equal

The transfer function of the first stage of the system of

to A/é/) ’Z__[_,Q
- JTET ‘d”;f -
eaffﬁ‘ J 7/5 /J 2 §/ 7@/7) . eo‘»'??;mc(

= ,;//ﬁ_ =T [1-exp( 2rfT)] = e

The second stage of the system is identical to the first stage.
function of the system is therefore -
- ///// = /@xf//y #//.7_[4/2///‘-42/5&’?
‘f e‘*? -Z Z;

H(f) ! 3 [1-expC-32nfT)122
(jenf) . [.:{2,7/72 /dZﬂ/Z// 2

The overall transfer

2
exp(-janfT )[ﬂa( Jt}';:f-_axp (=JufT )1

2
= 2xp(=32=fT) \V-ij':l(.—'ﬂ—)]

= T2 sine?(fT)exp(-322£T)

2 Wé&/@/
A %ﬁ/ L

7 /g/ /M/%/Zﬁ’é S5 W;f—a
ity = EH . /Zéw Z2H) = A4 . THed

AH) = /[5/// Sl -7) Jaty = UE)-LE-T)

sy r

=5 i) = FT AR T%M//Zz/rff

HE) = Gl = TSme 7)) S
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Problem 2.
(a) The transfer function of the ith stage of the system of Fig. p2.6 1s _

1
B () = 3735.7RC

1

l+j2mic,

wnere it is assumed that the buffer amplifier has a constant gain of one. The overall
transfer function of the system is therefore

N
H(f) I Hi(f)

i=1

1
(1eg2xrr )"

The. corresponding amplitude response is

1

HO? =

[1+(2rg1,)1 7
(b) Let
2. 2
@ 4:2N

Then, we may rewrite the expression for the amplitude response as

1' 2 N/s2
[H(f)] = ‘:1+ l—‘(fT)

In the 1limit, as N approaches infinity, we have

1 > N/2
lim [1+ n—(n)'}
Nooo

fH(E) |

= expl— « 2D

2
= exp(- _1'2__)
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I ¢ Z = 7 Ty Tz —

Zp mé%ﬂ/ a,
Problem 5 _. Jw,.‘mg /4/ /é/f/u/)/ /ZF/'Z(;}Z"

(a) g(t) = sinc(t) = 3inlmt) Gl = ”*f"/f/// ——D:‘~——> £

at _l/

Glt)=268) =2 nect(£ -ty ) ,& ;
Grtp=2-L Sonel4, ) gozxr oy
‘9;{-[{) = S’/‘me["/"/) @(52/71;—‘34 ygz

Therefore, }575

/"L/ j,‘»// = S;/IZCZ{/Z‘)

We note that

1-cos(xt)

g(t) = -y

g(t) + Jg(t)

S+(t) =
al) = ¢ = g/ (1 Zé /
_ sin(nmt) . 1-cos(mt) [) /3[)/ / e [/Z/
- wt 7t
£ \ .
= L1 - costm) - 3 sin(m}”é ; [ é;)l | vy ) i
= J‘E[l - exp(imt)] = ;%—-f[ e _/]z d_'f;"f W € )z. E{Lf,;,/;‘;f/& ),(;A\'
() glt) = [1+k cos(ZV'fmt)]ccrs(anct) - 5’/3‘”0[“5’/7,) e

k k
cos(2r.rct) + 5 cos[2w( fc+rm)t] + 5 eos[2n(fo-fm)t]
Since the Hilbert transform of cos(27ft) is equal to sin(27mft), it follows that

;(t) = sin(?wfct) + -S- sin[?w(fc+fm)t] + % sin[21r(f‘c-fm)t]

it is assumed that fc>t‘m. Therefore,

‘ (t) exp(j21rfct) + %exp[ jZn(rc+fm)t] + % expl j2w( fc-fm)t:

[0+ & expliznt t) « & expleg2nt t))lexp(s2nr )

= [1 + Kk coS(Zﬁfmt)]exp(qu'fct)
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v 7 Wik 2
Provien/f- Pnch #Y fO7 S >
ZpfedE
C M “, _sint \ 2 o T Srmeld)
” B o) = ,égwem//{% /14;////&-)"
4 90574 97 9£¢Zdé ,&
///ﬂmu/’ The Hilber%: transform of sin t/t is j gj::{{) /¢L‘L‘(r/) Mfd/
VORI I 1 5 R Thics ¢
g(t) R | {’ -ET d Q//:[f) _fﬁml’d L,,)&éc%/)f) /
. ,m[/7{ ) ",‘— ,4@01 )
. g S - f(—,;rf ; (%)
<3 L HED N\ el Yime Sealiy 1P
Fhatsin 1f &‘)é" GH, %Zw
= '11:? S (% + JTT) sin t dt '\\ gﬁii/:‘,/jdi‘ p );//‘ ; 7’
e S : aeet (=
) \\g//)= sizfd—> /AT I
sl MR e s RS e, 5 (f)
— 7
He note that _ -1
} 25
I- sine(t)dt = 1 ( @(f)--d}% G'Zf/-
- =+ ﬂf%f‘?[ﬂ&f{f )+'Wl/
erefore, /417 4L
. it (B8 ’l(ﬁ )7
s sin T 4. - 4

= g&) .Jn[_l_gfnc(“,)][é% ‘J

;- sin t dy = f“-‘ sin(t=r) o { .5»[4) = ?Vna( g/m(f/?,}
T, tet - T i .—f_g,m(g/ (/_ AN {—
= sin t / c;.s—rdrn-ccstj 'u%dr
///3 &Aﬁ?//:’//é;zﬁfz)::ng,,
= -1 cos ¢
s obtain

(g) s %(1-cos t) //2’4
Yy o

&f) %/7// &C +/

JW = L/ Séf“/ 7

Fu) = L(1- =2
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e e =
; /J/z,gzé # 5/) . T §ﬁ[75/
(
- |
S e 1

S17) = el L)y aect (L)
@ (T) = F?[%{/)j = é‘g/)':nc (4‘2‘7%,23)%/@47

Ryts) = P, = & nuts
_//ﬁp)é /9 -
Bi0)= [ S PE = € = far

76




3.5. HW 5 CHAPTER 3. HWS

3.5 HW 5

Local contents

B.5.1 Problem 1. . . . . . . . . 77
3.5.2 Problem 2. . . . . . . 78
.53 Problem 3. . . . . . . 78
3.5.4 Problem 4f. . . . . . . .. 80
[3.0.5  Keysolution| . . . . . . ... 80

3.5.1 Problem 1

Ficure P1.12

Figure 3.13: the Problem statement

3.5.1.1 Part(a)

Assuming stationary process,

Ry (1) < 5: (f)

But S, (f) =48 (f) +tri (%), hence

Ro(r)=F ! (5 (f) + tri (2‘];()))
:_Z [5 (f) +tri <2§0>] eI IT qf

But F ! (tm' (%)) = foiUomD) and £ =1 (5 (f)) = 1, hence the above becomes

f027r27'2 )

Hence

dc part AC part

A= —_—
R, (1) = "1 + fosinc® (for)
3.5.1.2 Part(b)

Hence DC power in X () is given 1 watt.

3.5.1.3 Part(c)
The AC power is fy watt.
7
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3.5.1.4 Part(d)

Since R, (7) = 1+ fosinc? (fo7), we need to make this zero. But this has no real root as
solution (assuming fo > 0)

To obtain a solution, I will only consider the AC part.

Hence we need to solve for 7 in

R, (1) = fosinc® (for) =0

i.e. the AC part only.
This is zero when sinc? (fo7) = 0 or when sin (7 fo7) = 0 or when
wfor = kmw, k= 4+1,£2,---.

Hence when ] 5
7’ = :l:—’ :I:—’ PO
foo fo

3.5.2 Problem 2

' = ) A ;
V" 1.13 A pair of noise processes my(¢) and nalr) are related by
1.(t) = mylt) cos(2wft + 8) = my{t] sin(2ofz + &)
where £, is a constant, and 8 is the value of a random variable 8 whose probability densiey
function is defined by

[ = = 0= T
fuld) = ‘I""'.'_ i} s idnw
L0, otherwise
The noise process #,(1) is statonary and its power spectral densiry is as shown in Figure

P1.13. Find and plot the corresponding power spectral density of nait).

Ficure P1.13

Figure 3.14: the Problem statement

(see graded HW for solution)

3.5.3 Problem 3

A random telegraph signal X (¢) charaterized by the autocorrelation function

RX (7_) . e—21/|tau|

14, Determine the
he filter

‘ - ¢ Fagure P1.
: s RC flter of Figure 7
: lied to the 10“"?3':'5 R 1 1 rocess at t
- tant, is apphea 1o A S the random P
whesswits cc;]ng : si,w anpc'. autocorrelation function of th -
or spectral density
power spectal

pucput.

(]

—_— QOutput

- e

Ficure P1.14

Figure 3.15: the Problem statement
78



3.5. HW 5 CHAPTER 3.

HWS

Let S, (f) be the psd of the output, then

Sy (f) = S. (f)|H (/)

But

Se (f) = F (Rx (7))

0 00
— /62@76—327rf7-d7_+/€—2v76—j27rf7—d7_

0 %)
— /eT(QU—jZWf)dT+ /67(—2v—j27rf)d7_
0o 0

[ertzv=iznn)® [ert—2umszmn)]

—00 0
20— j2n f —2v — j2nf
1 -1
= : + :
20— g2nf  —2v—j2nf
1 1
= . + .
20— g2 f  2v+j2nf
B 4v
42 4 4x2f?

Now we need to find H (f). Using voltage divider H (f) = ;/(((J; % — wafc
Jj2wfC

hence 1
MUY= Garpre+1
Hence
1
H(f)| =
] 1+ (27 fRC)?
Then

Sz (f AP

1
s +4wzf2> (amner)

T (40?1 42 f2) (1 T An2PR2CE)
B 4v
42 + 402 (2n fRCO)? + 472 f2 4 42 f2 (27 fRC)?
4v
T 102 + 16022 f2R2C2 + A2 f2 1 1672 f2n? f2R2C?
v

o v2 -+ 4U27T2f2R202 4 7T2f2 + 47r4f4R202

Now, R, (7) is the inverse Fourier transform of the above.
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3.5.4 Problem 4

integrator is defined by

1.15 A runningt
y(t) = J.—r x(7) dT

is the output, and T is the integrat ion period. Both x(#) and
) and “Y(t), respectlv vely. Show that

f srationary Processes X(t)
_elated to that of the integrator input

where x(t) is the input, yl)
yll‘ are sample functions O
the power spect crral density of the integrator r outputis T

as

Sy(f“l = Tl SiIlC'UTJS_)(‘-‘f‘)

Figure 3.16: the Problem statement

(see graded HW for solution)

3.5.5 Key solution
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e 473 Vi e

Problem 1.17
- The autocorrelation function of X(t) is
Rx('r) = E[X(t+1 ) X(t)]

22 Elcos(2gFt + 2¢Fr —0) cos(2rFt — )]

2
& Elcos(imFt + 2rFr - 2) + cos(2rFr) ]

Averaging over ©, and noting that © is uniformly distributed over 2r radians, we get

A2
Rx(r) = 5= Elcos(2rF1)]

P
5~ I fF(f) cos(2nft) df

-0

Next, we note that Rx(r) is related to the power spectral density by

-]

Ry(t) =/ Sy(f) cos(2nft) df

-
pPourer
Therefore, comparing Egqs. (1) and (2), we deduce that the spectral density of X(t) is

G

Sx(f) = 2—-fF(f)
When the frequency assumes a constant value, fc (say), we have

21 1
fF(f) = 5(f-fc) + Eé(ﬁfc)

5{#%)*5%5}%

N

Ciz
z

g < ) = A

s s =4 §

19
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FE S5 3 cAS 8 S FE 3

,/ Problem /i /@

(a) The power spectral density consists of two components:
(1) A delta function §(t) at the origin, whose inverse Fourier transform is one.
(2) A triangular component of unit amplitude and width Zfo, centered at the originj;

.2
the inverse Fourier transform of this component is fo sinc (fol'). N

Therefore, the autocorrelation function of X(t) is

Rx(r) =1 + Ty sincz(for)

which i3 sketched below:

0

{
| | |
1 1 |
P 0. 1 2
f

0 % £

! !

| 1

3 2

£ £ -
0

= cos[?n(t,l_tzn

(b) Since RX(T) contains a constant .component of amplitude 1, it follows thaﬁ the dec
power contained in X(t) is 1.

(e) The mean-square value of X(t) is given by

EX2(t)] = R, (0)

=1
+f0

The ac power contained in X(f) is therefore equal to fo.
(d) If the sampling rate is fo/n, where n is an integer, the samples are uncorrelated.
They are not, however! statistically independent. They would be statistically independent
if X(t) were a Gaussian process.
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[3.6.1  Questionsg| . . .

HW and key are missing.

3.6.1 Questions

360

CHAPTER 8 = RANDOM SIGNALS AND NOISE

8.35) Consider a wide-sense stationary process X (¢) having the power spectral density Sy(f)
in Fig. 8.26. Find the autocorrelation function Rx(7) of the process X (¢).

Sx(H)1]
1.0

L " Ficure 8.26 Problem 8.35.

8.36 The power spectral density of a random process X(¢) is shown in Fig. 8.27.
(a) Determine and sketch the autocorrelation function Rx(7) of X(¢)
(b) What is the dc power contained in X(t)?

(c) What is the ac power contained in X(2)?

(

d) What sampling rates will give uncorrelated samples of X(#)? Are the samples statis
independent?

Sx(f)1

/

S T FIGURE 8.27 Problem 8.36.

8.37 Consider the two linear filters shown in cascade as in Fig. 8.28. Let X(¢) be a stationary pi
with autocorrelation function Rx(7). The random process appearing at the first filter of
is V() and that at the second filter output is Y(z).

(a) Find the autocorrelation function of V(t).
(b) Find the autocorrelation function of Y(1).

Vo -
/= b —Y0)

X(t)—>

FIGURE 8.28 Problem 8.37.

8.38“; The power spectral density of a narrowband random process X(2) is as shown in Fig. 8.29.

the power spectral densities of the in-phase and quadrature components of X(t), ass
fo = 5 Hz.

SN |
(W/Hz) |

TH2)  “FiGURE 8.29  Problem 8.35.
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Figure 3.17: the Problem statement
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3.7.1 Questions

Bookbs Coxsf ?

HW qustion. ysed £ s F &Ll
ap.5  Problems 369

(fo)sss — fi = 7090 kHz — 2.225 kHz = 7087.775 kHz
a space frequency (binary 0) of
(fodsse — fa = 7090 — 2.025 = 7087.975 kHz
and a carrier frequency of
(Fodrsxk = (fo)sse — (fedpen 103 = 7090 — 2.125 = 7087.875 kHz

Consequently, the SSB transceiver would produce a FSK digital signal with a carrier frequency
of 7087.875 kHz.

For the case of alternating data, the spectrum of this FSK signal is given by (5-85) and
(5-86), where f. = 7087.875 kHz. The resulting spectral plot would be like that of Fig. 5-26a,
where the spectrum is translated from f, = 1170 Hz to f, = 7087.875 kHz. It is also realized
that this spectrum appears on the lower sideband of the SSB carrier frequency (f.)ssg = 7090
kHz. If a DSB-SC transmitter had been used (instead of a LSSB transmitter), the spectrum
would be replicated on the upper sideband as well as on the lower sideband, and two redundant
FSK signals would be emitted.

For the case of random data, the PSD for the complex envelope is given by (5-90) and
shown in Fig. 5-25 for the modulation index of & = 0.7. Using (5-2b), the PSD for the FSK
signal is the translation of the PSD for the complex envelope to the carrier frequency of
7n87.875 kHz. .

5-1 An AM broadcast transmitter is tested by feeding the RF output into a 50-Q (dummy) load. Tone
modulation is applied. The carrier frequency is 850 kHz and the FCC licensed power output is
5000 W. The sinusoidal tone of 1000 Hz is set for 90% modulation.

(a) Evaluate the FCC power in dBk (dB above 1 kW) units.

(b) Write an equation for the voltage that appears across the 50-Q load, giving numerical val-
ues for all constants.

(c) Sketch the spectrum of this voltage as it would appear on a calibrated spectrum analyzer.

(d) What is the average power that is being dissipated in the dummy load?

(e) What is the peak envelope power?

E;j An AM transmitter is modulated with an audio testing signal given by.m(t) = 0.2 sin @t +
0.5 cos wyt, where f; = 500 Hz, f, = 500 \ﬁ Hz, and A, = 100. Assume that the AM signal is
fed into a 50-Q load.

(a) Sketch the AM waveform.
(b) What is the modulation percentage?
(c) Evaluate and sketch the spectrum of the AM waveform.

@For the AM signal given in Prob. 5-2: w\J.O/J s
. . At |
(a) Evaluate the average power of‘the AM signal. 14 ’H/&O \\\ A% pot % {g
(b) Evaluate the PEP of the AM signal. ol
5-4 Assume that an AM transmitter is modulated with a video testing signal given by
m(tr) = —0.2 + 0.6 sin ;¢ where f; = 3.57 MHz. Let A = 100.
(a) Sketch the AM waveform.
(b) What is the percentage of positive and negative modulation?
) Evaluate and sketch the spectrum of the AM waveform about f;.
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R - .
370 /P&\/ AM, FM, and Dig:tal Modulated Systems ¢

—3( 5-5 /A 50,000-W AM broadcast transmitter is being evalnated by means of a two-tone tg
' transmitter is connected to a 50-Q load and m(¢) == A; cos wyt + A} cos 2m1
fi = 500 Hz. Assume that a perfect AM signal is generated.
(a) Evaluate the complex envelope for the AM signal in terms of A, and w;.
(b) Determine the value of A; for 90% modulation.
(c¢) Find the values for the peak current and average current into the 50-Q2 load for the 90
ulation case.
5-6 An AM transmitter uses a two-quadrant multiplier so that the transmitted signal is descy
(5-7). Assume that the transmitter is modulated by m(1 - = A,, cos @,,t, where A, is adj
that 120% positive modulation is obtained. Evaluate the spectrum of this AM signal in -

Ac, [, and f,,. Sketch your result.
/@ A DSB-SC signal is modulated by m(t) = cos ot + 2 cos 2w;f where @)
f1 =500Hz, and 4, = 1.
(a) Write an expression for the DSB-SC signal and sketch a picture of this waveform.
{b) Evaluate and sketch the spectrum for this DSB-SC signal.
(c) Find the value of the average (normalized) power
(d) Find the value of the PEP (normalized). ) Mok —
5-8 )Assume that transmitting circuitry restricts the modulated output signal to a certain pe
@ say Ap, because of power-supply voltages that are used and the peak voltage and curr’;i
sh g of the components. If a DSB-SC signal with a peak value of A, is generated by this cirad
. that the sideband power of this DSB-SC signal is four times the sideband power of a,
o ble AM signal having the same peak value, A, that :ould also be generated by thisgg,
@ A DSB-SC signal can be generated from two AM signals as shown in Fig. P5-9. Usi
matics to describe signals at each point on the figure prove that the output is a DSB-

AM
modulator

A
m(r) Osciliator
1kQ Ef— j

ie‘ A
Y W +| Amp ) modulator
A R

Figure P3-9

\;Hqﬂ..«\ﬂ-ﬂ\z“ »

Bandpass
output

5-10 Show that the complex envelope g(t) = m(¢) — 1(r) produces a lower SSB sig!
that m(¢) is a real signal.

S-11 Show that the impulse response of a —90° phase shift network (i.e., a Hilbert tr

V/zt. Hint:
. - jeT >
H(f) = tim | /€% /=0
a-0 je'af, <0
a>0

86



3.7. HW 7 CHAPTER 3. HWS

Chap. 5 Problems 371

5.12 SSB signals can be generated by the phasing method, Fig. 5-5a; the filter method, Fig. 5-5b; or
by the use of Weaver’s method as shown in Fig. P5-12. For Weaver’s method (Fig. P5-12)
where B is the bandwidth of m(z):

Low-pass

filter vs(1) vo(r)

Oscillator Oscillator | y.(p) p S0
h=%B | (h=f+3B <SB
‘; output

(1)
Modulation ~90° -90°
input phase shift phase shift

vg(1)

Low-pass
filter V(1) - V(D)

-1BHz

Figure P5-12 Weaver’s method for generating SSB.

(a) Find a mathematical expression that describes the waveform out of each block on the block
diagram.

(b) Show that s(¢) is an SSB signal.

n SSB-AM transmitter is modulated with a sinusoid m(t) = 5 cos w;¢, where @w; = 27f;,

1 = 500 Hz, and A, = 1.

(a) Evaluate m ().

(b) Find the expression for a Jower SSB signal.

(c) Find the rms value of the SSB signal. &

(d) Find the peak value of the SSB signal. ~~

(€) Find the normalized average power of the SSB signal. ¢~

(f) Find the normalized PEP of the SSB signal.

5-14 An SSB-AM transmitter is modulated by a rectangular pulse such that m(z) = II(#/T) and
A, = 1.
(a) Prove that

2+ T
2~-T

1
Mty = —In
z

as given in Table A-7.
(b) Find an expression for the SSB-AM signal, s(z), and sketch s(z).
(c) Find the peak value of s(r).
5-15 For Prob. 5-14:
(a) Find the expression for the spectrum of a USSB-AM signal.
(b) Sketch the magnitude spectrum, |S(f).
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5-16 A USSB transmitter is modulated with the pulse

() = sin zat

i) mat
(a) Prove that

sin?[(na/2)t]

O = e

(b) Plot the corresponding USSB signal waveform for the case of A, = 1, @ = 2, and
fe = 20 Hz.
5-17 A USSB-AM signal is modulated by a rectangular pulse train:

m@)= > TI[(t — nTp)/T]
n=—2
where Tp = 2T. :
(a) Find the expression for the spectrum of the SSB-AM signal
(b) Sketch the magnitude spectrum, [S(f)].
___) 5-18) A phasing-type SSB-AM detector is shown in Fig. PS-18. This :ircuit is attached to the IF out-
put of a conventional superheterodyne receiver to provide SSB reception.

Ay A B I3
B U
A B* Ehl
c -
——-—————»c%§>~ —»  LPF
lCn\n“\'
D Oscillator
455 kHz
|
-90° AN
';-M
ES‘\!\N,.* ~
F [ G
LPF -90° phase shift |
LA L2 X
&) RN = S
- %M X e Sy ¥ *Figure P5-18
>

“ (a) Determine whether this detector is sensitive to LSSB or USSB signals. How would the de-
tector be changed to receive SSB signals with alternate (opposite type of) sidebands?
(b) Assume that the signal at point A is a USSB signal with f. = 455 kHz. Find the mathemat-
ical expressions for the signals at points B through 1.
(c) Repeat part (b) for the case of an LSSB-AM signal at poin- A.
(d) Discuss the IF and LP filter requirements if the SSB signal at point A has a 3-kHz band-
width.
5-19 Can a Costas loop, as shown in Fig. 5-3, be used to demodulate an SSB-AM signal? Demon-
strate that your answer is correct by using mathematics.
\j" 5-20 A modulated signal is described by the equation

s(t) = 10 cos[(27 X 108)r + 10 cos (27 X 1031)]
Find each of the following.
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(a) Percentage of AM.
(b) Normalized power of the modulated signal.
(¢) Maximum phase deviation.
(d) Maximum frequency deviation.
=i 5-21 A sinusoidal signal, m(t) = cos 27,1, is the input to an angle-modulated transmitter where the

carrier frequency is f = 1 Hz and f,, = f./4.
s (a) Plot m(t) and the corresponding PM signal where D, = 7.
(b) Plot m(r) and the corresponding FM signal where Dy = z.

V522 A sinusoidal modulating waveform of amplitude 4 V and a frequency of 1 kHz is applied to an
FM exciter that has a modulator gain of 50 Hz/V.
(a) What is the peak frequency deviation?
(b) What is the modulation index?
5-23 An FM signal has sinusoidal modulation with a frequency of f,, = 15 kHz and modulation in-
dex of 8 = 2.0.
(a) Find the transmission bandwidth using Carson’s rule.
(b) What percentage of the total FM signal power lies within the Carson rule bandwidth?
'{ ¥ S5-24 An FM transmitter has a block diagram as shown in Fig. P5-24. The audio frequency response
‘( is flat over the 20-Hz to 15-kHz audio band. The FM output signal is to have a carrier frequency
of 103.7 MHz and a peak deviation of 75 kHz.

FM
output

FM exciter Bandpass X8 Class C
fC = 5.00 MHz filter Frequency multiplier amplifier

N

Oscillator

%=

Figure P5-24

(a) Find the bandwidth and center frequency required for the bandpass filter.
(b) Calculate the frequency f; of the oscillator.
- (c) What is the required peak deviation capability of the FM exciter?

5-25 Analyze the performance of the FM circuit of Fig. 5-8b. Assume that the voltage appearing
across the reversed-biased diodes, which provide the voltage variable capacitance, is v(r) = 5 +
0.05m(r), where the modulating signal is a test tone, m(t) = cos @t, @ = 2zfi, and f; = 1
kHz. The capacitance of each of the biased diodes is C; = 100/41 + 2v(¢) pF. Assume that
Co = 180 pF and that L is chosen to resonate at 5 MHz.

(a) Find the value of L.
(b) Show that the resulting oscillator signal is an FM signal. For convenience, assume that the
\/ peak level of the oscillator signal is 10 V. Find the parameter Dy.

5-26 A modulated RF waveform is given by 500 cos{w.t + 20 cos wif], where w; = 2xf,
fi = 1kHz, and f; = 100 MHz.

(a) If the phase deviation constant is 100 rad/V, find the mathematical expression for the cor-
responding phase modulation voltage m(r). What is its peak value and its frequency?

“(b) If the frequency deviation constant is 1 X 106 rad/V-s, find the mathematical expression
for the corresponding FM voltage, m(t). What is its peak value and its frequency?

(¢) If the RF waveform appears across a 50-Q load, determine the average power and the PEP.
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\/5-27 Given the FM signal s(¢) = 10 cos [w.t + 100 {" . m(c) der], where m(t) is a polar squar
wave signal with a duty cycle of 50%, a period of 1 s, and a peak value of 5 V.
(a) Sketch the instantaneous frequency waveform and the waveform of the corresponding Fl
signal (see Fig. 5-9).
(b) Plot the phase deviation 8(¢) as a function of time.
(c) Evaluate the peak frequency deviation.

5-28 A carrier s(t) = 100 cos(2x X 10°) of an FM transmitter is modulated with a tone signal. F
this transmitter a 1-V (rms) tone produces a deviation of 30 kHz. Determine the amplitude a
frequency of all FM signal components (spectral lines).that are greater than 1% of the unmo
ulated carrier amplitude for the following modulating signals
(@) m(t) = 2.5 cos(3x X 10%).

(b) m(t) = 1 cos(6x X 10%).
5-29 Referring to (5-58), show that
J—n(ﬂ) = (—1)”111(,3) .
5-30 Consider an FM exciter with the output s(r) = 100 cos[271000r + 8(¢)]. The modulation
m(t) = 5 cos(278¢) and the modulation gain of the exciter i: 8 Hz/V. The FM output signal
passed through an ideal (brickwall) bandpass filter which has a center frequency of 1000 Hz
bandwidth of 56 Hz, and a gain of unity. Determine the normalized average power:
(a) At the bandpass filter input.
(b) At the bandpass filter output.

5-31 A 1-kHz sinusoidal signal phase modulates a carrier at 146.52 MHz with a peak phase dev
tion of 45°. Evaluate the exact magnitude spectra of the PM signal if A, = 1. Sketch your
sult. Using Carson’s rule, evaluate the approximate bandwidth of the PM signal and see if ir
a reasonable number when compared with your spectral plor.

5-32 A 1-kHz sinusoidal signal frequency modulates a carrier at [46.52 MHz with a peak deviat
of 5 kHz. Evaluate the exact magnitude spectra of the FM s.gnal if A, = 1. Sketch your res
Using Carson’s rule, evaluate the approximate bandwidth of the FM signal and see if itisar
sonable number when compared with your spectral plot.

5-33 The calibration of a frequency deviation monitor is to be ver:fied by using a Bessel function t
An FM test signal with a calculated frequency deviation is 2enerated by frequency modulat
a sine wave onto a carrier. Assume that the sine wave has a frequency of 2 kHz and that
amplitude of the sine wave is slowly increased from zero w.ntil the discrete carrier term (at
of the FM signal reduces to zero, as observed on a spectrim analyzer. What is the peak
quency deviation of the FM test signal when the discrete currier term is zero? Suppose that
amplitude of the sine wave is increased further until this discrete carrier term appears, reac
a maximum, and then disappears again. What is the peak fre quency deviation of the FM test ¢
pal now?

5-34 A frequency modulator has a modulator gain of 10 Hz/V and the modulating waveform is

0, r<<?
5, 0<r<]

@ m(t)y =415 1<r<3
7, 3<tr<4
0, 4<¢

(a) Plot the frequency deviation in hertz over the time interval 0 < r < 5.
(b) Plot the phase deviation in radians over the time intérnal 0 < ¢ < 5.
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3.9 HW 9

Local contents

[3.9.1 Problem 5-5. . . . . . . .. 99
3.9.2 Problem 5-8. . . . . .. 101
3.9.3  Problem 5-13[ . . . . . . .. 101
[3.9.4 Problem 5-18 . . . . . . . . 103
[3.9.5  Keysolution| . . . . . ... 105
3.9.1 Problem 5-5
]
5.5 A 50.000-W AM broadcast transmitter is being evaluated by means of a two-tone w:l. The “;n,:
mitter is connected to a 50-Q load, and m(t) = Ay cos ot + Ay cos sl W 1
fi = 500 Hz. Assume that a perfect AM signal is generated.
(a) Evaluate the complex envelope for the AM signal in terms of A; and @;.
(b) Determine the value of A, for 90% modulation. . i o o0
(ﬂ Find the values for the peak current and average current Into the 50-0 load for the 90%
modulation case. {
Figure 3.18: the Problem statement
3.9.1.1 part(a)
in-phase component
s(t)=A. (14 k,m(t)) cosw.t
Assume k, = 1 in this problem. m (¢t) = A; (cosw;t + cos2w;t), then s (¢) becomes
p )
in-phase component
s(t) = A (14 Aj (coswit 4 cos 2wit)) cos w,t (1)
But s (t) can be written as
s(t) = s1(t) cosw.t — sq (t) sinw,t (2)

Where sy (t) is the inphase component and sg (¢) is the quadrature component of s (t).
Compare (1) to (2), we see that

sp(t) = A [1 + Ay (coswit + cos 2wit)]

SQ (t) =0

Now, the complex envelope 5 (t)of s (t) is given by
5(t)=sr(t)+jsq(t)
Hence replacing the value found for s; (t) and sq (t) we obtain
5(t) = A, [1 + Ay (coswit + cos 2w t)] (3)

Now, we can find A, since the average power in the carrier signal is given as 50000 watt

as follows )

A
Pav carrier — € = 50000
— 2(50)

Hence
A. = /100 x 50000 = 2236.1volt
Then (3) becomes
5(t) =2236.1[1 + A (coswit + cos 2w t)] (4)
The above is the complex envelope in terms of A; and w; only as required to show.
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3.9.1.2 part(b)

o Amax - Amin
h= Amax + Amin (5)
Need to find angle at which coswit + cos 2wyt is Max and at which it is min. then Let
A = coswt + cos 2wt

We see that when wit = 27, then A =1+ 1 = 2, hence
Amax = Ac (14+2A4;)

Need to find A,,;, hence we need to find A,,;, For this case we must use calculus as it is
not obvious where this is minimum

OA . .
— =0 = —w; sinwit — 2wy sin 2wyt
ot
0 = —w; sinw;t — 2wy (2sin (wit) cos (wit))
= —w; sinwyt — 4wy sin (wqt) cos (wit)
- ¢
5 = cos (wt)

Hence wit = cos™! (‘71) — wit = 104.477° (using calculator). hence

Ay = COS (104.4770) 1 cos (2 X 104.4770)

= —0.2499 — 0.875
=—1.1249
Then A, = A. (1 — 1.1249A4,), so from (5) above
o Amax - Amin
o= Amax + Amin
o — Ac(L+241) — A (1 1.12494))

A (14+2A1) + A (1 —1.12494,)
(1+2A)) — (1 —1.12494,)
(1+24;) + (1 —1.1249A4,)
14+2A; —1+1.1249A,
14+2A;4+1—1.1249A4,

B 3.1249A,
24+ 0.87514,
Hence
1.840.9(0.8751A4;) —3.94; =0
1.8—-234,=0
Then

3.9.1.3 part(c)

Since

Amax = Ac (1 + 2A1)
= 2236.1(1+2 x 0.77012)
= 5680. 2 volts

Then from Ohm’s law, V = RI,

<

max

[rnax -
R
5680.2

20
= 113.6 amps

Since mean voltage is zero, then average current is zero.
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3.9.2 Problem 5-8

5-8 Assume that transmitting circuitry restricts the modulated output signal to a certain peak value,
say. Ap, because of power-supply voltages that are used and because of the peak voltage and
current ratings of the components, If a DSB-SC signal with a peak value of A, is generated by
this circuit, show that the sideband power of this DSB-SC signal is four times the sideband pow-

er of a comparable AM signal having the same peak value Ap that could also be generated by
this circuit.

Figure 3.19: the Problem statement

answer For normal modulation, let

Sam (1) = Ac (1 4+ m (t)) cos w,t

Maximum envelop is 24, (i.e. when my,.x () = 1), this means that A, = 24,

But

carrier side band

Sam (t) = Accosw .t + Acm (t) cosw,t

. . A . . . A, \2 A2
So max of sideband is A, or 5*. Hence maximum power of sideband is % (;”) = - and

for DSB-SC, where now use A, in place of what we normally use A. then we obtain
s(t) = A,m (t) cosw,t
Hence maximum for sideband is A2
Hence we see that power of sideband of DSB-SC to the power of sideband of AM is
4

A7
8

=14

3.9.3 Problem 5-13

ck block
avefor each block on the t
| expression that describes the waveform oul of
: 4 a mathematical expres
(a) Find a mather
diagram.

e | = 2afi.
(b) Show that s(1) is an SSB signal “A

i inusoi (ty = 5 cos anls where @
SSB-AM transmitter is modulated with a sinusoid m(
5-13 An S5B-Al s
f, = 500 Hz, and A, = 1.
) Evaluate f(1)- 7 . end
([b)) Find the expression for a lower %SBlSLgna
Fi glue of the SSB signal.
(¢) Find the rms value O Zne!
(d) Find the peak value of the SSB s::n;i‘, AP
(e) Find the normalized average power

o g ;'l
(f) Find the normalized PEP of the SSB. signa s
5.14 An SSB-AM transmitter is modulated by a rectang

Ao = 1.
(a) Prove that

R e g |
ar pulse such that m(r) = [@/T) an

21+ T|
77|

1
M) = —1In
o I

Figure 3.20: the Problem statement

3.9.3.1 part(a)

m (t) = bcoswt
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m (t) is Hilbert transform of m (t) defined as m (t) = / m (1) 7=dr. Or we can use the

frequency approach where 7 (t) = F ' [—j sign(f) M (f)] where M (f) is the Fourier
transform of m (t). We can carry out this easily, but since this is a phase 90 change, and
m (t) is a cosine function, then
m(t) = Hsinwt
3.9.3.2 part(b)
sssp (1) = Ac[m (t) cosw.t F M (t) sin w,t]

Where the negative sign for upper sided band, and positive sign for the lower sided band,
hence

spssp () = Ae[m (t) cosw.t + 1 (t) sin w,t]
= 5A. [cos wyt cos w,t + sin w;t sin w,t]
= 5A.[cos (we — wy) t]

We can plug in numerical values given

srssp (t) = 5[cos (we — wy) t]

3.9.3.3 Part(c)
To find the RMS value of the SSB, pick the above lower side band. First find P,,.

spssp (t) = blcos (w1 — we) t]

Hence

RM S value of signal = i

V2
= 3.5355 volt

3.9.3.4 part(d)

Then maximum of 5 [cos (w; — w,) ] is when cos (w1 — w,) ¢t = 1, hence

SLSS B (1) = Hvolt
3.9.3.5 part(e)

Py — A2
2

= 1 X 25
2
= 12.5watt

3.9.3.6 Part(f)

1
PEP = §S%SSBMX (t)

52
T2
= 12.5 watt
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3.9.4 Problem 5-18

5.18\ A phasing-type SSB-AM detector is shown in Fig. P5-18. This circuit is attached to the IF out-

put of a conventional superheterodyne receiver to provide SSB reception.

TA LPF
x

D Oscillator
455 kHz

Y

Audio
1 output

| -90° phase shift

Figure P5-18
(a) Determine whether this detector is sensitive to LSSB or USSB signals. Hov_v would_zhe de-
ve SSB signals with alternate (opposite type of) sidebands”

tector be changed to recei ) 7
¥ — 455 kHz. Find the mathemat

(b) Assume that the signal at point A is a USSB signal with f;

ical expressions for the signals at points B thrgugh L .
(¢) Repeat part (b) for the case of an LSSB-AM srgna‘I at point A. . )
(d) Discuss the IF and LP filter requirements if the SSB signal at point A has a 3-

width.

kHz band-

Figure 3.21: the Problem statement

3.9.4.1 part(a)
This is a detector for USSB (Upper side band). i.e.
s(t) = A (m (t) cosw.t — M (t) sinw,t)
Note, I wrote A, and not % in the above. As long this is a constant, it gives the same
analysis.

The reason is because at point H the signal is —%m (t) and at the C point the signal is
+3m (t) , hence due to subtraction at the audio output end we obtain m (t). To receive
LSSB, we should change the sign to positive at the audio output end.

3.9.4.2 part(b)
s(t) = A. (m (t) coswt — M (t) sin w,t)
at point B

local oscillator

/ 1 1
= A A. <m (t) (2 + 5 cos 2wct> - im (t) sin 2wct)

low pass high pass high pass

ALA, AA,
m(t) + 5

’
C C

m (t) cos 2wt — m (t) sin 2wt

at point C, after LPF we obtain
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at point F we have

sy (t) = s(t) A, sinw,t
= A A, (m () coswet — i (t) sin w,t) sin w,t
= A A, (m (t) cos (wet) sin (wet) — 17 (t) sin® wct>
A

/ 1 1 1
= A(j c <m (t) 5 sin (2w.t) — m (t) (2 — 5 cos 2wct>)
_ ACQAC (m (£) sin (20,t) — 12 (£) (1 — cos 2wit))
at point G after LPF /
(1) = 2 (1)
at point H after —90° phase shift
n(t) = + 555 (1)

at point I, we sum s, (t) and s, (t), hence s; (t) = A;Acw + %m (t) = A A.m (t)

3.9.4.3 Part(c)
s(t) = A.(m(t) coswet + M (t) sin w,t)

This the same as part (b), except now since there is a sign difference, this carries all the
way to point I, and then we obtain

m(t) AA,
2 2

This if this circuit is used as is to demodulate an LSSB AM signal, then the signal will be
lost. So, instead of adding at point I we should now subtract to counter the effect of the
negative sign.

si (1) = ALA, m(t) =0

3.9.4.4 part(d)

Since SSB has bandwidth of 3kH z then this means the width of upper (or lower) band is
3khz. This means the signal has 3khz bandwidth. This diagram shows the LPF requirement

-455-3 _455khz 455+3
Upper band SS 455

signal

Frequency fin khz

-455khz -3 +3 455
LPF

Showing the Low Pass Filter requirement for use with LSSB demodulation

Figure 3.22: Low pass filter

Hence LPF is centered at zero frequency and have bandwidth of 3khz (may be make it a
little over 3khz band width?)
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The IF filter is centered at 455+ (g) for the upper band of the positive band, and centered

at —455 — (%) for the upper band of the negative band. (i.e. for the USSB).

For LSSB, IF should be centered at 455 — (%) for the lower band of the positive band,
and centered at —455 + (%) for the lower band of the negative band. (This works if there

is a guard band around 455, small one, to make the design of IF possible).

3.9.5 Key solution

EEy3 S # D ey Serel &

- 2
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, de
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3.10 HW 10

Local contents

10.1 1 240 110
13.10.2 Part(b)l . . . . . . 111
3.10.3 Problem 5.201 . . . . . . . 111
10.4 Problem 5220 . . . . .. 112
3.10.5 Problem 5.24 . . . . . . . . 113
3.10.6 Problem 5.261 . . . . . . . . 114
[3.10.7 Key solution| . . . . . . . . ... 116

3.10.1 Problem 3.24

) = } i
3.24 Consider a composite wave obtained by adding a noncoherent carrier A uln"l;,iif ;’\ | |”I -::‘.rl
DSB-SC wave cos(2af.t)m(t). This composite wave is applied to an ideal envelope detector.
Find the resulting detector output for
(a) & 0
(b) ¢ # 0 and |m(1)] << A./2

Figure 3.23: the Problem statement

s1(t) = Ag cos (wet + @)

DSB-SC signal is
o (t) = m (t) cos (w,t)
Hence by adding the above, we obtain

s(t) =m(t) cos (wet) + Ae cos (wet + @)

The above signal is applied to an ideal envelope detector. The output of an envelope
detector is given by

Since s (t) is a bandpass signal, we need to first write it in the canonical form s; () cos (w.t)—
s¢ (1) sin (w.t)

Using cos (A + B) = cos Acos B — sin Asin B, then we have

s(t) =m(t) cos (wet) + A. [cosw,t cos ¢ — sinw,t sin ]
= [m (t) + A cos @] cos (wet) — A sinw,t sin ¢

Hence we see that

si(t) =m(t)+ A.cos ¢
sqg(t) = A.sing

Now we can start answering parts (a) and (b)
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3.10.1.1 Part(a)
When ¢ = 0, then

Hence

a(t) = [m(t) + A + 02
=m(t)+ A,

3.10.2 Part(b)
When ¢ # 0 and |m (t)] << 4

t) + AJ? + [A,sin ¢]?

a(t) =/Im(
VIm? () + A2+ 24,m ()] + [A2sin? ¢]

Since |m (t)| << 4¢, then m? (t) + A2 4+ 2A.m (t) ~ A? hence

a(t) ~ /A2 + A2sin’ ¢
= A\/1 +sin? ¢

3.10.3 Problem 5.20

5-20 A modulated signal is described by the equation

s(1) = 10 cos[(27 X 108)¢ + 10 cos (27 X 10°1) ]
Find each of the following:
(a) Percentage of AM.
(b) Normalized power of the modulated signal.
(¢) Maximum phase deviation. h
(d) Maximum frequency deviation.

Figure 3.24: the Problem statement

3.10.3.1 Part(a)

An AM signal is s (t) = A.[1 + p m (t)] cos (2w f.t + 6 (t)). Now compare this form with
the one given above, which is s(t) = A.cos (27w f.t + 6 (t)). We see that p = 0, i.e. no
message source exist. Hence percentage of modulation is zero.

3.10.3.2 Part(b)

Py = lAz
2
But A. = 10, hence
1
Py = E
2
= b0watt
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3.10.3.3 Part(c)

From the general form for angle modulated signal

s (t) = cos (wet + 0 (1))

Looking at
Total Phase

27 fe o(t)

s(t) = A.cos (27r X 108)15 + 10 cos (27r X 1O3t>

Phase deviation is
0(t) = 10 cos (27 x 10°t)

Which is maximum when cos (27 X 10%) = 1Hence maximum Phase deviation is 10
radians.

3.10.3.4 part(d)

Now, we know that the instantenouse frequency f; is given by

1 d
(1) = — = (total ph
fi (1) 5 7t (total phase)

1 d

1 3
== |27 fot + 10.cos (27 x 10%) |
= £, —10 (103) sin (27r x 10%)
The deviation of frequency is the difference between f; and the carrier frequency f.. Hence
from the above we see that the frequency deviation is

- 10 (103) sin (27r x 103t)

So, maximum A f occures when sin (27 x 10%t) = —1, hence

max (Af) = 10* Hz

3.10.4 Problem 5.22

8§22 A sim i l
>~22 imusordal modulating waveform o Y
: oduiating wavetorm of amplitude 4 V and frequency | kHz is applied to an FM
exciter that has a modulator gain of 50 Hz/\ - e
(a) What is the peak frequency deviation?
(b) What is the modulation index?

Figure 3.25: the Problem statement

The modulating waveform is m (¢) Hence (I am assuming it is cos since it said sinusoidal)

m (t) = A, cos (27 fiut)
= 4 cos (20007t)
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Since it is an FM signal, then

o(t)

t

s(t) = Accos |wet + 27rk;f/ m (z) dx
0

Where k; is the frequency deviation constant in cycle per volt-second. The gain here means
the frequency gain, which is the frequency deviation (deviation from the f. frequency).
Let Af be the frequency deviation in Hz, then

1d
“orai’ )
= k;fm (t)
= ky [4 cos (20007t)]

3.10.4.1 Part(a)

max Af is

(Af)max = 4kf

But ky = 50 hz/volt, hence

(Af), 0 = 4% 50

= 200hz
3.10.4.2 Part(b)
Modulation index
A
5 — ( f)ma,x
fm
~ 200
~ 1000
=0.2

3.10.5 Problem 5.24

5-24 AnF itter
An FM transmitter has the block diagram shown in Fig. P$-24. The audio frequency l‘
’ . . : = i & one CSpons
1\_ll.|t u:a.l the 20-Hz-t0-15-kHz audio band. The FM output signal is to  frequen
of 103.7 MHz and a peak deviation of 75 kHz. }
(@) Find the bandwidth and center frequency required for the bandpass filter

(b) Calculate the frequency f;, of the oscillator.
(¢) What is the required peak deviation capability of the FM exciter?

M e , M
ENCRet Bandpass %8 _ﬁ outpst
[, 3.00 MHz filter Frequency Class € >
[ multiplies amplifier |

have a carrier frequency

Oscillator
f

Figure P5-24

Figure 3.26: the Problem statement
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t
s(t) = A, cos (27rfct + 27ky / m () da:)
0
We are told the carrier frequency has f. = 103.7 Mhz, but there is a multiplier of 8, and
hence the center frequency of the bandpass filter must be % of the carrier frequency. i.e.
center frequency of the bandpass filter is é103.7 = % = 12.963

Since peak deviation is 75khz, which means the deviation from the central frequency has

maximum of 75khz, then

785 = 9.375 khz

Hence bandwidth from center of frequency of bandwidth filter is 9.375 but we need to add
frequency width of the audio which is 15000 — 20 = 14980 Hz on both side, hence

Bandwidth of BPF is 9.375 x 103 4= 14980

3.10.5.1 Part (b)
To do

3.10.6 Problem 5.26

9
=26 A modulated RF waveform is

I kHz, and ¢ 1) MH7
(a) If the pl

given by 500 coslarr + 20 cos s where w 2%
1ase deviation constant is 100 rad/V. find the

responding phase
(b) If the

mathematical expression for the coe

modulation voltage m(r). What is its peak value and its frequency?

|lktil]\>.\\ \L\!.l“l 1 constant 1s | I“ llhf.\ S ]II'.t’ Ih\. ”hl”ln”i.l“ al X x
. ¢ CAPIess
() \‘il ab 1s 1S ;‘L.IL. -IIU\.

tor the corresponding FM voltage m
(c) If the 10 e ‘ 5
1¢ RF waveform appears across a 50 {2 load, d

and 1ts frequency?

ctermine the average power and the PEP

Figure 3.27: the Problem statement

s(t) = A, cos (wet + 20 cos wit)

where A, = 500, f; = 1khz, f. = 100M hz

3.10.6.1 Part(a)
The general form of the above PM signal is

phase deviation
—

s(t)=A.cos |wt+ kym(t)

Where k,m (t) is the phase deviation, and k, is the phase deviation constant in radians
per volt. Hence we write

kym (t) = 20 cos wqt

Then

20 coswqt
mt) == —
P

But we are given that k, = 100 rad/voltage and f; = 1000hz, then the above becomes
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20 cos (20007t)

100
= 0.2 cos (20007t)

m (1)

its frequency is 1 khz and its peak value is 0.2 volts

3.10.6.2 Part(b)

The general form of the above FM signal is

s(t) = A.cos (wct + kg /Otm (x) da:)

Where k; is the frequency deviation constant in radians per volt-second

Hence

t
k;f/ m (x) dz = 20 coswyt
0

Solve for m (t) in the above, given that k; = 10°radians per volt-second, hence

t
kf/ m (z) dx = 20 cos wqt

0

t

20 20007t
/m(x)dx: cos mt)
0 106

Take derivative of both sides, we obtain

m(t) = 12(?6 [— sin (20007t) x 20007]

20 x 20007
g
— —0.126 sin (20007¢)

sin (20007t)

Hence its peak value is 0.126 and its frequency is 1 khz

3.10.6.3 Part(c)

50
1
s A
50
5007
~ 100
— 2500watt

PEP is average power obtained if the complex envelope is held constant at its maximum
values. i.e. (the normalized PEP) is

PEP = max (|3 (1) )
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Since
s(t) = A.cos (wt + 20 coswit)
= A, [cosw.t cos (20 coswit) — sinw,t sin (20 cos wit)]
s1(t) sq(t)
= A.cos (20 cos wyt) cos wet — A, sin (20 cos wyt) sin w,t
Hence
§(t) =51 (t) +Jsq ()
= A, cos (20 coswit) + j A, sin (20 cos w;t)
Then

15(t)] = \/[AC cos (20 cos wit)]” + [A, sin (20 cos wit)]?

= A.\/cos? (20 cos wit) + sin? (20 cos wi t)

— A,

Hence the non-normalized PEP is

100
= 2500watt

ps. is there an easier or more direct way to find PEP than what I did? (assuming it is

correct)

116



3.10. HW 10 CHAPTER 3. HWS

3.10.7 Key solution

ot :’,7’7 ~E ek 7
~5-18.] fay g

P Yl = M) cos wy b TRE) S ot
SLerz

® 3 @)= T Wit

(B) tpt)= 1 )45t = M/ O3 oyt 3 Aty wirt cos it
= B ()4 o 20gt) F ﬁ&mlwqf

©

(tz

@ UE(Q = 4Mm U),F‘ﬁ |

(B) vlt) = N Y v (6) 2
= mE) s T cogw/Fﬁ T o) am %F%

- M'éis SN Z“J;Pf + QK—Q( |- Lo ZW/F{>
2 2

(© v V=73 w?_g;\
(B v, =7 w ()

Va
@ v () = \JCUQ + \JH(H

W\({\—\—&E‘Q
2 T2

o) = % ) _ues@?
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575 Q%I%o Teceive RSN 3‘}3“\& (s , subtract

—

VH(JC\ WCFOM \JCH\ ot ‘MNC’_ Su_Mvméf,

C +
3 > 1
y -
(L) see pcﬂr (a.)
(¢ see P“WL (a)) (ussé
QM TE dhould be cendered oF (Q\f “nge)
heve TUHy B and <1_538,

as quH a NH*O@‘( ‘(:mC]Lof‘ as 4%

QC@\I\OM{QQH% \Ceqsl'lolﬁ,

LPF shocld hawe 2KH: Rw and

at swaell a po ll-of£ foctor as i<
feagible also,

J/ 520 (a) 0% AM

\B ) Pm " A /2- = /v’VL 5.:—_.
) IN T =D radisny
G} Wd(i) d&(‘é} = -/p [ZODDT[}J'I.H (lmDTT 'é/

- -t = okl
A Awa( . fo(zodW -t o= /o
Frit = B 277
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e T3 Sy S S

5+ 22| M) Ay 0ot (afat) =4 cog (2 x184)
@) fi = fo+aFGor (am xitd)
AFs ke Ay (505?) (Lw] = 209 Hz

k) A=BE = 2ood; . gp
Tn IKH}, s

o <

I 5
/524, (a.) (o= YOS b, -2t M2

Q
— 5K
M’@PF i 9.395 EHz
B, = 2 (aF+L.) = 2 (a8 +15) Kt
= 49.75 EH
(b)) @BPF:( = [ =1296-5 = 796w ks
(-f = £=1296+5 = 1796 e
Copr ’F —
\C SmH
(¢y aF = EER 29 ph:
Fmeg g
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3.11 HW 11

Local contents

3.11.1 Problems . . . . . . .
[3.11.2 Key solution| . . . . . . . . .. .

This was not collected. Practice problems for class only.

3.11.1 Problems

Fond Yand o, 2

foo S—ply

Problems 397

high noise peaks. It is apparent that these false pulses have a finite though small
probability of occurrence when the noise is Gaussian, no matter how small its
standard deviation is compared with the peak amplitude of the pulses. As the
transmission bandwidth is increased indefinitely, the accompanying increase in
average noisc power eventually causes the false pulses to occur often enough,
thereby causing loss of the wanted message signal at the receiver output. We thus
find, in practice, that both PPM and PDM systems suffer from a threshold effect
similar to that experienced in FM systems.

Synchronization in Pulse-Time Modulation
Systems

As with PAM systems, synchronization in pulse-time modulation systems is
established by transmitting a distinctive marker per frame. In a PDM system, the
marker may be identified by omitting a pulse, as illustrated in Fig. 7.13(c) for a
PDM system involving three independent message sources. One method of
identifying such a marker in the receiver is to utilize the charging time of a simple
resistor-capacitor circuit to measure the duration of the intervals between dura-
tion-modulated pulses. The time constant of the circuit is chosen so that, during
a marker interval, the voltage across the capacitor rises to a value considerably
higher than that during the normal charging interval. Thus, by applying the output
of the circuittoa shoer with an appropriate slicing level, the presence of a marker is
detected.

In a PPM system, the marker pulse may be identified by making its duration
several times longer than that of the message pulses, as illustrated in Fig. 7.13(d).
At the receiver, the marker pulses may be separated from the message pulses by
using a procedure essentially similar to that described for the PDM system. In this
case, however, the capacitor is charged during the time of occurrence of each pulse,
and discharged during the intervening intervals. Accordingly, the voltage across
the capacitor reaches its highest value during the presence of a marker pulse, and
the marker pulses are thereby separated from the message pulses.

Problems
\/ Problem 7.1 The signal
g{t)= 10 cos(20rt)0os(200x¢)
is sampled at the rate of 250 samples per second.
(a) Determine the spectrum of the resulting sampled signal.
(b) Specify the cutoff frequency of the ideal reconstruction filter so as to recover g(1) from its
sampled version.
(c) What is the Nyquist rate for g{1)?

(d) By treating g(t) as a band-pass signal, determine the lowest permissible sampling rate for
this signal.
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Problem 7.3 The signals
45(1)= 10 cos{ 100mr)

- and

¢,(1) =10 cos(S0xt)
are both sampled at the rate of 75 samples per second. Show that the two sequences of samples
thus obtained are identical. What is the reason for this phenomenon?
Problem 7.3 The signal
g} =10 conl60n)oos>(160xs}

is sampled at the rate of 400 samples per second. Determine the range of permissible cutoff
frequencies (or the ideal reconstruction filter that may be used to recover gir) from its sampled

version.

Problem 7.4 A signal git) consists of two lrequency components f, = 1.9 kHz and f; = 4.1 kHz
in such a relationship that they just cancel each other out when the signal gi1) is sampled at the
instants 1= 0, T. 27, .. .. where T == 125 us. The signal g(r) is defined by

wp-«»(z:j,« + ;)+ A cosi2xfyt + &)

Find the values of amplitude 4 and phase ¢ of the second frequency component.

Preblem 7.5  Let E denote the energy of a sirictly band-limited signal g(t). Show that E may be
eapressed in terms of the sample values of g(t). taken at the Nyquist rate, as follows

oz LK)

where W is the highest frequency component of gl1).
Probiem 7.6  The spectrum of a signal gir) is shown in Fig. P7.1. This signal is sampled at the

Nyquist rate with a periodic train of lar pulses of d 50/3 mill ds. Plot the
P of the pled signal for freq up to 50 hertz.
o
Prodlen?,?" This problem is aimed at the fact that practical electronic switching 3

circults will not produce a sampling that
M) denote some arbitrary pulse shape, 50 that the sampling function c{r) may be expressed as

lets of exactly rectangular pulses. Lot

Problems 399

= Y ht—nT)
where T, is the
defined by

pling period. The pled version of an Incoming analog signal g(1) is

oe)=clt)gie)
(a) Show that the Fourier transform of s{f) is given by

sm-—;- T o( —_:_)H(;)

where G /)= F[g(0)] and H( ()= F[i)).
(5) What is the effect of using the arbitrary pulse shape A1)?

Problem 7.8 Consider a continuous-time signal g(r) of finite energy. with a continuous
lpeclrumlG( J). Assume that G(/) is sampled uniformly at the discrete frequencies f=kF,.
thereby g the of i Y los G(kF,), where k is an integer In the entire

range —oc <k <o, and F, Is the fn:]nmq sampling Interval. Show that if g{t) is duration-
Timited, »o that it ls 2ero outaide the Interval —T' <1< T then the signal is completely definod
by specifying G( /) at frequencies spaced 1/2T hertz apart,

Problem 7.9
(8) Consider a stationary process X(¢) that Is nor strictly band-limited In the band W: that is,
A0, [f|>W

where Sy /) Is the power spectral density of the process. The process X(1) Is applied to an
ideal low-pass filter defined by the transfer function

Lo |fl<w
"‘”'{o. Ul>w

producing the process X {t). This process Is next sampled at a rate equal to 2W, producing
the sequence of samples X {n/2W). An approximate reconstruction of the original process

T i)

Show that the mean-square value of the sampling error is
&=E[(X()-Y(1)*]

©
-2 I A
w
() Given that
fo
Sl f)m =
f) Fafi
determine the corresponding value of the quare error &, and plot It as a function of
Wifo.
[ Probiem 7.10 Consider a seq of samples x(nT;) obtained by ling a | time
signal xit} at the rate 1/T,. It b» required to | the ling period 7, to a new value
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3.11.2 Key solution

EE G4 3 ttep 7 : frege |

Chapter 7

Pulse-Analog Modulaticn

Problem 7.1
(a) The signal g(t) is
g(t) = 10 cos(20=nt) cos(200wt)
= 5[cos(2207t) + cos(1807t)]
The Fourier transf‘ohn of g(t) is
G(f) = 2.506(f-110) + 8(f+110) + 8(f-90) + 6(r+9o$]

Hence, the spectrum of the sampled version of g(t), with a sampling period 'l's = 1/250 s,

is given by . +@
- i / - m
1 n é’/f ff
G(f) == I G(f -%F) A_—:-/ 2’-
H Ty nee T, D P

4
"

250 x 2.5 T [8(f-110-250n) + &(f+110-250n) + &(f-90-250n) + &§(f+90-250n)]

nz-=

(b) The spectra G(f) and GS(” are illustrated below:

G(£)
e l ‘ e l I . £ (Hz)
-110 -90 (4} 90 110
G_(f) ”
.— Ideal reconstruction
ra filter characteristic
L r—— T "
L 1 )
. 1 . .
Bial Hi il i1t
i |
- JR ' 1 I . e - . £ {HZ)
-360 -340 -250 =-1604 *-50 %0 ¢ 3 160 250 340y tno
-140 -110 110 140 : 360 390
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r o

EE Tt T s 7 - ST

From this diagram, we deduce that in order to recover. the original signal g(t) from
sa(t). we need to use a low-pass filter with a cutoff frequency that is greater than 110
Hz but less than 140 Hz.

(c) The highest frequency component of g(t) is 110 Hz. The Nyquist rate of g(t) is
therefore 220 Hz. .

(d) The signal g(t) may be viewed as a band-pass signal occupying the frequency interval
90 to 110 Hz, that is,

Z = ffo w= fle-50 = L0

-y |

—

7777
737 é _{‘_(_ = /G =5, 5; > '4‘{:_5
=W T %

A

= e - "?;(__//‘9: GGz

Problem 7.2
The spectrum of g..l(t) is
51(1') = 5[8(f-50) + 8(f+50)]

Hence, the spectrum of the sampled version of ‘l(t)’ using a sampling period T, = 1/75 s,
is '

1 . n
G, (f) =— L G (f ~ =)
16 T, e | T,
3 -
= §75 I [8(f-50-75n) + &(£+50-T5n)] (1)
Z’K N=—e . -

Next, the spectrum of gz(t) is
G,(f) = 5[8(f£-25) + §(£+25)]

Hence, the spectrum of the sample version of gz(t), using & sampling period T, =1/75 s, is

G,g(f) = 375 I [8(£-25-T5n) +8(f+25-T5m)] (2)

| £

In the right-hand side of Eq. (2), substitute n = %1 for the first tern.'an(n = m+1 for
the second term, and so rewrite this equation as follows:

125




3.11.

HW 11 CHAPTER 3. HWS

FE4% 3 clept #7 pasie. s

Gzé(f) = 375 I &(f+50-752) + 375 I &(£-50-75m)

j o ) M= .

375 I [8(f-50-T5n) + §(£+50-T5n)} ‘ : (3)

Nz—oe

"

We thus find from Eqs. (1) and (3) that the spectra G.ls(f) and st(f) are identical. That
is, the sample versions of 31(':.) and 52(t) are identical.

We note that the Nyquist rate of g,(t) is 100 Hz; hence, with a sampling rate of 75
Hz, the signal 31(t) is under-sampled by 25 Hz below the Myquist rate, On the other hand,
the Nyquist rate of gz(t) is 50 Hz; hence, the signal gz(t) 1s over-sampled by 25 Hz above
the Nyquist rate. Thus, although 31(t) and gz(t) represent two sinusoidal waves of .
different frequencies, we find that by under-sampling 31(” and over-sampling gz(t)
appropriately, their sampled versions are identical. °

Problem 7.3

Express the signal g(t) as .

glt)

10 cos(60xt) c032(1601t)

5 cos(60mt)[1 + cos(320mt)]

5 cos(60xt) + 2.5 cos(380wt) + 2.5 cos(260sxt)

The spectrum of g(t) is
G(f) = 2.5[86(f-30) + &(£+30)] + 1.25[6(f=190) + &(£+190)) + 1.25[6(£-130) + &(f+130)3

The corresponding spectrum of the sampled versionof g(t), using a sampling rate of 800 Hz,
is therefore -

Gglf) =3— T G(f - L)
S N=-= -}

2.508(£-30-400n) + 8(f+30-500n)]

"

o
o
o
™

+ 1.25[8(£-190-400n) + 8(f+190-800n)]
L+ 1.250 §(f-130-400n) + &(f+130-800n)]

The spectra G(f) and Gg4(f) are illustrated below:
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G(f)

P | 1

£ (H2z)
-190 -130 -30 0 30 130 190
G (f) 1deal reconstruction
e _s__ _______ filter characteristic
-
| I
| ' |
{ bt bt
: - | - I i— £(Hz)
~430 =370 -270 =210 -190 -130 -30 0 30 130 190 210 270 370 430

From this diagram, we deduce that in order to recover the original signal g(t) from its

sampled version, the low-pass reconstruction filter must have a cutoff frequency greater
than 190 Hz but less than 210 Hz.

Problem 7.4
The signal at the sampling instants is:
g(nT) = cos(21f1n'1' + -;-) + A cos(zﬂ'zn'l‘ + ¢)
=0, n=0, 1, 2, ece
At n =0,

x
cos(s) + A cos¢p=0. (1)

“Atn= 1,2, ..., with £, = 3.9 kHz, f, = 8.1 kHz, and T = 125 us, we have

c0s(0.975n% + —;l) + A cos(1.025 ns + ¢) = 0.

(2)

From (2) and cos(0.975nx + %) being non-zero, A must be non-zero. From (1) and A being
non-zero, ¢ must be * -;- Equation (2) then becomes:

-s3in(0.975n%) + A sin(1.025n%) = O. (3)

Since sin(s) 13 odd symmetric about n¥, K equals 1 and the ambiguous sign in (3) 1is

negative. Therefore, ¢ = '-;-.
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