poise 1

も主動機

## Chapter 7

#### Pulse-Analog Modulation

# Problem 7.1

(a) The signal g(t) is

$$g(t) = 10 \cos(20\pi t) \cos(200\pi t)$$
  
=  $5[\cos(220\pi t) + \cos(180\pi t)]$ 

The Fourier transform of g(t) is

$$G(f) = 2.5[\delta(f-110) + \delta(f+110) + \delta(f-90) + \delta(f+90)]$$

Hence, the spectrum of the sampled version of g(t), with a sampling period  $T_s = 1/250$  s, is given by

G<sub>s</sub>(f) = 
$$\frac{1}{T_s} \sum_{n=-\infty}^{\infty} G(f - \frac{n}{T_s}) = \int_{\infty}^{+\infty} \frac{1}{m} G(f - mfs)$$

= 250 x 2.5 
$$\Sigma$$
 [ $\delta(f-110-250n) + \delta(f+110-250n) + \delta(f-90-250n) + \delta(f+90-250n)$ ]

(b) The spectra G(f) and  $G_{\kappa}(f)$  are illustrated below:





F/

house -

From this diagram, we deduce that in order to recover the original signal g(t) from  $g_{\delta}(t)$ , we need to use a low-pass filter with a cutoff frequency that is greater than 110 Hz but less than 140 Hz.

- (c) The highest frequency component of g(t) is 110 Hz. The Nyquist rate of g(t) is therefore 220 Hz.
- (d) The signal g(t) may be viewed as a band-pass signal occupying the frequency interval 90 to 110 Hz, that is,

$$f_a = 110$$
  $W = 110 - 90 = 20$ 

$$f_0 = \frac{2f_u}{m}$$

$$m \leq \frac{f_u}{w} = \frac{1/6}{20} = 5.5 \implies m = 5$$

## Problem 7.2

The spectrum of g<sub>1</sub>(t) is

$$G_1(f) = 5[\delta(f-50) + \delta(f+50)]$$

Hence, the spectrum of the sampled version of  $g_1(t)$ , using a sampling period  $T_s = 1/75 s$ , is

$$G_{1\delta}(f) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} G_1(f - \frac{n}{T_s})$$

$$= \frac{3}{2V} \sum_{n=-\infty}^{\infty} [\delta(f-50-75n) + \delta(f+50-75n)]$$
(1)

Next, the spectrum of go(t) is

$$G_{2}(f) = 5[\delta(f-25) + \delta(f+25)]$$

Hence, the spectrum of the sample version of  $g_2(t)$ , using a sampling period  $T_e = 1/75$  s, is

$$G_{2\delta}(f) = 375 \sum_{n=-\infty}^{\infty} [\delta(f-25-75n) + \delta(f+25-75n)]$$
 (2)

In the right-hand side of Eq. (2), substitute n = L-1 for the first term, and n = m+1 for the second term, and so rewrite this equation as follows:

EE 443

Clupt #7

paye-3



$$G_{2\delta}(f) = 375 \sum_{\ell=-\infty}^{\infty} \delta(f+50-75\ell) + 375 \sum_{m=-\infty}^{\infty} \delta(f-50-75m)$$

$$= 375 \sum_{n=-\infty}^{\infty} [\delta(f-50-75n) + \delta(f+50-75n)]$$
 (3)

We thus find from Eqs. (1) and (3) that the spectra  $G_{1\delta}(f)$  and  $G_{2\delta}(f)$  are identical. That is, the sample versions of  $g_1(t)$  and  $g_2(t)$  are identical.

We note that the Nyquist rate of  $g_1(t)$  is 100 Hz; hence, with a sampling rate of 75 Hz, the signal  $g_1(t)$  is under-sampled by 25 Hz below the Nyquist rate. On the other hand, the Nyquist rate of  $g_2(t)$  is 50 Hz; hence, the signal  $g_2(t)$  is over-sampled by 25 Hz above the Nyquist rate. Thus, although  $g_1(t)$  and  $g_2(t)$  represent two sinusoidal waves of different frequencies, we find that by under-sampling  $g_1(t)$  and over-sampling  $g_2(t)$  appropriately, their sampled versions are identical.

## Problem 7.3

Express the signal g(t) as

$$g(t) = 10 \cos(60\pi t) \cos^{2}(160\pi t)$$

$$= 5 \cos(60\pi t)[1 + \cos(320\pi t)]$$

$$= 5 \cos(60\pi t) + 2.5 \cos(380\pi t) + 2.5 \cos(260\pi t)$$

The spectrum of g(t) is

$$G(f) = 2.5[\delta(f-30) + \delta(f+30)] + 1.25[\delta(f-190) + \delta(f+190)] + 1.25[\delta(f-130) + \delta(f+130)]$$

The corresponding spectrum of the sampled version of g(t), using a sampling rate of 400 Hz, is therefore

$$G_{\delta}(f) = \frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} G(f - \frac{n}{T_{s}})$$

$$= 400 \sum_{n=-\infty}^{\infty} \left[ 2.5[\delta(f-30-400n) + \delta(f+30-400n)] + 1.25[\delta(f-190-400n) + \delta(f+190-400n)] + 1.25[\delta(f-130-400n) + \delta(f+130-400n)] \right]$$

The spectra G(f) and  $G_{\delta}(f)$  are illustrated below:

Chapt. #7

page 4







From this diagram, we deduce that in order to recover the original signal g(t) from its sampled version, the low-pass reconstruction filter must have a cutoff frequency greater than 190 Hz but less than 210 Hz.

#### Problem 7.4

The signal at the sampling instants is:

$$g(nT) = \cos(2\pi f_1 nT + \frac{\pi}{2}) + A \cos(2\pi f_2 nT + \phi)$$
  
= 0, n = 0, 1, 2, ...

At n = 0,

$$\cos(\frac{\pi}{2}) + A \cos\phi = 0. \tag{1}$$

At n = 1, 2, ..., with  $f_1 = 3.9$  kHz,  $f_2 = 4.1$  kHz, and T = 125  $\mu$ s, we have

$$\cos(0.975n\pi + \frac{\pi}{2}) + A \cos(1.025 n\pi + \phi) = 0.$$
 (2)

From (2) and  $\cos(0.975n\pi + \frac{\pi}{2})$  being non-zero, A must be non-zero. From (1) and A being non-zero,  $\phi$  must be  $\pm \frac{\pi}{2}$ . Equation (2) then becomes:

$$-\sin(0.975n\pi) + A \sin(1.025n\pi) = 0.$$
 (3)

Since  $sin(\cdot)$  is odd symmetric about  $n\pi$ , A equals 1 and the ambiguous sign in (3) is negative. Therefore,  $\phi = \frac{\pi}{2}$ .