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high noise peaks. It is apparent that these false pulses have a finite though small
probability of occurrence when the noise is Gaussian, no matter how small its
standard deviation is compared with the peak amplitude of the pulses. As the
transmission bandwidth is increased indefinitely, the accompanying increase in
average noise power eventually causes the false pulses to occur often enough,
thereby causing loss of the wanted message signal at the receiver output. We thus
find, in practice, that both PPM and PDM systems suffer from a threshold effect
similar to that experienced in FM systems.

Synchronization in Pulse-Time Modulation
Systems

As with PAM systems, synchronization in pulse-time modulation systems is
established by transmitting a distinctive marker per frame. In a PDM system, the
marker may be identified by omitting a pulse, as illustrated in Fig. 7.13(c) for a
PDM system involving three independent message sources. One method of
identifying such a marker in the receiver is to utilize the charging time of a simple
resistor-capacitor circuit to measure the duration of the intervals between dura-
tion-modulated pulses. The time constant of the circuit is chosen so that, during
a marker interval, the voltage across the capacitor rises to a value considerably
higher than that during the normal charging interval. Thus, by applying the output
of the circuit to a slicer with an appropriate slicing level, the presence of a marker is
detected. '

In a PPM system, the marker pulse may be identified by making its duration
several times longer than that of the message pulses, as illustrated in Fig. 7.13(d).
At the receiver, the marker pulses may be separated from the message pulses by
using a procedure essentially similar to that described for the PDM system. In this
case, however, the capacitor is charged during the time of occurrence of each pulse,
and discharged during the intervening intervals. Accordingly, the voltage across
the capacitor reaches its highest value during the presence of a marker pulse, and
the marker pulses are thereby separated from the message pulses.

Problems

V Problem 7.1 The signal
g(1)= 10 cos(20n1)cos(200x1)
is sampled at the rate of 250 samples per second.

(a) Determine the spectrum of the resulting sampled signal.

(b) Specify the cutoff frequency of the ideal reconstruction filter so as to recover g{1) from its
sampled version.

(c) What is the Nyquist rate for g{r)?

(d) By treating g(t) as a band-pass signal, determine the lowest permissible sampling rate for
this signal.
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Problem 7.2 The signals
g5(0)=10 co{ 100m?)

- and

#1()= 10 cos(S0xr)
are both sampled at the rate of 75 samples per second. Show that the two sequences of samples
thus obtained are identical. What is the reason for this phenomenon?
Problem 7.3 The signal
glrY =10 con(60nr)cos?(160xs}

is sampled at the rate of 400 samples per second. Determine the range of permissible cutofl
frequencies for the ideal reconstruction filter that may be used (o recover g(1) from Its sampled

version.

Problem 7.4 A signal glt) consists of two frequency components f; » 19 kHz and f; =4.1 kHz
in such a relationship that they just cancel each other out when the signal g{1) is sampled at the
instants 1= 0. .27, .. .. where T w 125 us. The signal g(1) is defined by

gm-m;(zq,u;)m cON2Rfy1+ )

Find the values of amplitude 4 and phase ¢ of the second frequency component.

Problem 7.5  Let E denote the energy of asirictly band-limited signal g(t). Show that E may be
eapressed in terms of the sample values of g(t). taken at the Nyquist rate, as follows

e LK)

where W is the highest frequency component of g(().
Problem 7.6  The spectrum of a signal g{1) is shown In Fig. P7.1. This signal is sampled at the

Nyquist rate with a p dic train of lar pulses of d: 50/3 milll ds. Piot the
P of the sampled signal for freq up to 50 hertz.
an
Probless 77" This problem is aimed at the fact that p I electronic switching 4§

circults will not produce a sampling fi that
Mt} denote some arbitrary pulse shape, 50 that the sampling function c{r) may be expressed as

of exactly rectangular pulses. Lot 4 [ Probiem 7.10  Consider a seq of |
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d0= Y ht—nT)
e

where T, is the

defined by

ling period. The pled version of an incoming analog signal g(r) is

ey =clt)glr)
(w) Show that the Fourier transform of s{f) is given by

L)

-z £ dr- Dl
where G( /)= F[g(t)] and H( ()= F[Ait ).

(b) What is the effect of using the arbitrary pulse shape A(1)?

Probiem 7.8 Consider a continuous-time signal g(r) of finlte energy. with a continuous
spectrum G{f). Assume that G(/) Is sampled uniformly at the discrete frequencies f=mkF,
thereby ob 3 Lhe seq of freq Y ples G(kF,), where k is an integer In the entire
range — o <k <o, and F, is the frequency sampling Interval. Show that i g(t) Is duration-
Timited. »o that it ls 2ero outside the Interval —T'<¢ & T then the signal s completely defined
by specifying G( /) at frequencies spaced 1/2T hertz apart,

Problem 7.9
(1) Consider a stationary process X(¢) that Is nor strictly band-limited In the band W that is,
SAN%0. |f>w

where Sx( /1 Is the power spectral density of the process. The process X(1) Is applied to an
ideal low-pass filter defined by the transfer function

Lo lfl<w
L N

producing the process X {1). This process is next sampled at a rate equal to 2¥, producing
the sequence of samples X {n/2W). An approximate reconstruction of the original process

s ol

Show that the mean-square value of the sampling error is
&=E[(xh-ry(n))

-2 _[:S.(IW

®) Given that

Jo
Sl f)m =
df) piry:
:l;(ermme the corresponding value of the mean-square error &, and plot it as a function of
fo-

les x(nT;) obtained by ling a conti time
signal x(r} at the rate 1/T,. It is req to | the ling period 7, to a new value
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Chapter 7
Pulse—Analog Modulation

Problem 7.1
(a) The signal g(t) 1is
g(t) = 10 cos(20wt) cos(200wt)
= 5[cos(2207t) + cos(1807t)]
The Fourier transform of g(t) is

G(E) = 2.508(f=110) + 8(£+110) + 6(£-90) + 6(£+90)]

e

-140 -110 110 140 : 360 390

Hence, the spectrum of the sampled version of g(t), with a sampling period '1's = 1/250 s,
is given by . 4
e oL 2 Glf-7f)
Gs(f) =1 I G(f -1.—) = In
S Nz-= s M N = —-D
~. =250 x 2.5 I [8(f-110-250n) + &(f+110-250n) + &§(f-90-250n) + &§(f+90-250n)]
Nz = - - e -
(b) The spectra G(f) and G‘E“) are illustrated below:
G(f)
) L £ (Hz)
-110 -90 [+] 90 110
G_(£f)
§ .— Ideal reconstruétion
K filter characteristic
: - - ="
LT | 1
R T I
A Hit JH AT
i |
. S ! | £ (u2)
-360 -340 -250 =-160+ *-90 0 % ¢ 3 160 250 3«:’ tu
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From this diagram, we deduce that in order to recover. the original signal g(t) from
85(")' we need to use a low-pass filter with a cqtoff frequency that is greater than 110
Hz but less than 140 Hz.

(c) The highest frequency component of g(t) is 110 Hz. The Nyquist rate of g(t) is
therefore 220 Hz. .

(d) The signal g(t) may be viewed as a band-pass signal occupying the frequency interval
90 to 110 Hz, that is,

Z = /o w= flo-90 = 20

‘

i
2 é _7{1{ - Ne =5',54 => }zt{:-5
: /4

The spectrum of gi(ti is
61(1') = 5[8(f-50) + &(f+50)]
;!:nce, the spectrum of the sampled version of gl(t), using a sampling period T, = 1/75 s,

1 e n
G, (f)=z=—7— ¢ G .(f -~ =)
16 '1's S 1 Ts

2 : -
=75 I [&(£-50-75n) + &(£450-T5n)] m

f, 24 Nz
Next, the spectrum of gz(t) is
G,(f) = 5[6(f-25) + §(£+25)]

Hence, the spectrum of the sample version of gz(t), using a sampling period T, z1/75 s, is

st“’? 375 I [8(f-25-T5n) +8(f+25-T5m)] (2)

Nz~

In the right-hand side of Eq. (2), substitute n = %1 for the first term, and n = mel for
the second term, and 30 rewrite this equation as follows:
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G,g(f) = 375 I 68(£+50-75L) + 375 I &(£-50-T5m)

Lo—os M=

375 L [6(f-50-75n) + &(f+50-75n)] ‘ : (3)

"

Nz

We thus find from Eqs. (1) and (3) that the spectra G, (f) and G, (f) are identical. That
is, the sample versions of g, (t) and B, (t) are identical.

We note that the Nyquist rate of gi(t) is 100 Hz; hence, with a sampling rate of 75
Hz, the signal 31(t) is under-sampled by 25 Hz below the Myquist rate. On the other hand,
the Nyquist rate of g,(t) is 50 Hz; hence, the signal g,(t) 1s over-sampled by 25 Hz above
the Nyquist rate. Thus, although £, (t) and ga(t) represent two sinusoidal waves of .
different frequencies, we find that by under-sampling g,(t)} and over-sampling gz(t)
appropriately, their sampled versions are identical.

Problem 7.3

Express the signal g(t) as .

g(t) = 10 cos(60xt) c052(1601t)

5 cos(60nt){1 + cos(320nt)]

5 cos{60xt) + 2.5 cos(380xt) + 2.5 cos(260st)

The spectrum of g(t) is
G(f) = 2.508(f-30) + &(£+30)3 + 1.25[6(f-190) + 8(f»190)] + 1.25[&(L-130) + a(fnéon

The corresponding spectrur of the sampled versionot g{t), using a sampling rate of 800 Hz,
is therefore

1 . n
Ga(f) =T r G(f - T)
S N=-» -}
2.506(f-30-400n) + §(f+30-300n)]
= 00 £ + 1.25[8(f-190-400n) + 8(f+190-800n)]

N=—o

L* 1.25[ 5(£-130-400n) + 8(f+130—400n)]
The spectra G(f) and G,(f) are illustrated below:
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G(£f)

P | |

£f(H2)
-190 -130 -30 0 30 130 190
Gs(f) Ideal reconstruction
____________ filter characteristic
-
1 [
I |
{ bt bon
. L l : f (H2)
~430 =370 -270 -210 =190 -130 -30 0 30 130 190 210 270

From this diagram, "we deduce that in oEder to recover the original signal g(t) from its

sampled version, the low-pass reconstruction filter must have a cutoff frequency greater
than 190 Hz but less than 210 Hz.

Problem 7.4
The signal at the sampling instants is:
g(nT) = cos(21f1n‘1' + %) + A cos(zlfzn‘l‘ + ¢)

=0, n=0, 1, 2, «oo

At n = 0,
®
coa(-z-) + Acosd=0. o M
“Atn= 1, 2, ..., With f1 = 3.9 kHz, fz = 5.1 kBz, and T = 125 ll.;a, we have
L1
c0s(0.975n% + —2-) + A c0s(1.025 nx &+ ¢§) = (2)

From (2) and cos(0.975nx + %) being non-zero, A must be non-zero. From (1) and A being
non-zero, ¢ must be * % Equation (2) then becomes:

~-s3in(0.975n%) + A sin(1.025n%) = (3

Since sin(e) is odd symmetric about nr, A equals 1 and the anbiguous sign in (3) is

negative. Therefore, ¢ --;-
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